geex
vignettes/v01_additional_examples.Rmd
v01_additional_examples.Rmd
This vignette implements examples from and is meant to read with
Stefanski and Boos (2002) (SB). Examples
4-9 use the geexex
data set. For information on how the
data are generated, run help('geexex')
.
##
## Attaching package: 'geex'
## The following object is masked from 'package:methods':
##
## show
Example 4 calculates an instumental variable estimator. The variables (\(Y_3, W_1, Z_1\)) are observed according to:
\[ Y_{3i} = \alpha + \beta X_{1i} + \sigma_{\epsilon}\epsilon_{1, i} \]
\[ W_{1i} =\beta X_{1i} + \sigma_{U}\epsilon_{2, i} \]
and
\[ Z_{1i} = \gamma + \delta X_{1i} + \sigma_{\tau}\epsilon_{3, i}. \]
\(Y_3\) is a linear function of a latent variable \(X_1\), whose coefficient \(\beta\) is of interest. \(W_1\) is a measurement of the unobserved \(X_1\), and \(Z_1\) is an instrumental variable for \(X_1\). The instrumental variable estimator is \(\hat{\beta}_{IV}\) is the ratio of least squares regression slopes of \(Y_3\) on \(Z_1\) and \(Y_3\) and \(W_1\). The \(\psi\) function below includes this estimator as \(\hat{\theta}_4 = \hat{\beta}_{IV}\). In the example data, 100 observations are generated where \(X_1 \sim \Gamma(\text{shape} = 5, \text{rate} = 1)\), \(\alpha = 2\), \(\beta = 3\), \(\gamma = 2\), \(\delta = 1.5\), \(\sigma_{\epsilon} = \sigma_{\tau} = 1\), \(\sigma_U = .25\), and \(\epsilon_{\cdot, i} \sim N(0,1)\).
\[ \psi(Y_{3i}, Z_{1i}, W_{1i}, \mathbf{\theta}) = \begin{pmatrix} \theta_1 - Z_{1i} \\ \theta_2 - W_{1i} \\ (Y_{3i} - \theta_3 W_{1i})(\theta_2 - W_{1i}) \\ (Y_{3i} - \theta_4 W_{1i})(\theta_1 - Z_{1i}) \\ \end{pmatrix} \]
SB4_estFUN <- function(data){
Z1 <- data$Z1; W1 <- data$W1; Y3 <- data$Y3
function(theta){
c(theta[1] - Z1,
theta[2] - W1,
(Y3 - (theta[3] * W1)) * (theta[2] - W1),
(Y3 - (theta[4] * W1)) * (theta[1] - Z1)
)
}
}
estimates <- m_estimate(
estFUN = SB4_estFUN,
data = geexex,
root_control = setup_root_control(start = c(1, 1, 1, 1)))
The R packages AER
and
ivpack
can compute the IV estimator and sandwich variance estimators
respectively, which is done below for comparison.
This example shows the link between the influence curves and the Hodges-Lehman estimator.
\[ \psi(Y_{2i}, \theta) = \begin{pmatrix} IC_{\hat{\theta}_{HL}}(Y_2; \theta_0) - (\theta_1 - \theta_0) \\ \end{pmatrix} \]
The functions used in SB5_estFUN
are defined below:
F0 <- function(y, theta0, distrFUN = pnorm){
distrFUN(y - theta0, mean = 0)
}
f0 <- function(y, densFUN){
densFUN(y, mean = 0)
}
integrand <- function(y, densFUN = dnorm){
f0(y, densFUN = densFUN)^2
}
IC_denom <- integrate(integrand, lower = -Inf, upper = Inf)$value
SB5_estFUN <- function(data){
Yi <- data[['Y2']]
function(theta){
(1/IC_denom) * (F0(Yi, theta[1]) - 0.5)
}
}
estimates <- m_estimate(
estFUN = SB5_estFUN,
data = geexex,
root_control = setup_root_control(start = 2))
The hc.loc
of the ICSNP
package computes the Hodges-Lehman estimator and SB gave closed form
estimators for the variance.
## $geex
## $geex$parameters
## [1] 2.026376
##
## $geex$vcov
## [,1]
## [1,] 0.01040586
##
##
## $cls
## $cls$parameters
## [1] 2.024129
##
## $cls$vcov
## [1] 0.01047198
This example illustrates estimation with nonsmooth \(\psi\) function for computing the Huber (1964) estimator of the center of symmetric distributions.
\[ \psi_k(Y_{1i}, \theta) = \begin{cases} (Y_{1i} - \theta) & \text{when } |(Y_{1i} - \theta)| \leq k \\ k * sgn(Y_{1i} - \theta) & \text{when } |(Y_{1i} - \theta)| > k\\ \end{cases} \]
SB6_estFUN <- function(data, k = 1.5){
Y1 <- data$Y1
function(theta){
x <- Y1 - theta[1]
if(abs(x) <= k) x else sign(x) * k
}
}
estimates <- m_estimate(
estFUN = SB6_estFUN,
data = geexex,
root_control = setup_root_control(start = 3))
The point estimate from geex
is compared to the estimate
obtained from the huber
function in the MASS
package. The variance estimate is compared to an estimator suggested by
SB: \(A_m = \sum_i [-\psi'(Y_i -
\hat{\theta})]/m\) and \(B_m = \sum_i
\psi_k^2(Y_i - \hat{\theta})/m\), where \(\psi_k'\) is the derivative of \(\psi\) where is exists.
theta_cls <- MASS::huber(geexex$Y1, k = 1.5, tol = 1e-10)$mu
psi_k <- function(x, k = 1.5){
if(abs(x) <= k) x else sign(x) * k
}
A <- mean(unlist(lapply(geexex$Y1, function(y){
x <- y - theta_cls
-numDeriv::grad(psi_k, x = x)
})))
B <- mean(unlist(lapply(geexex$Y1, function(y){
x <- y - theta_cls
psi_k(x = x)^2
})))
## closed form covariance
Sigma_cls <- matrix(1/A * B * 1/A / nrow(geexex))
results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)),
cls = list(parameters = theta_cls, vcov = Sigma_cls))
results
## $geex
## $geex$parameters
## [1] 4.82061
##
## $geex$vcov
## [,1]
## [1,] 0.08356179
##
##
## $cls
## $cls$parameters
## [1] 4.999386
##
## $cls$vcov
## [,1]
## [1,] 0.0928935
Approximation of \(\psi\) with geex is EXPERIMENTAL.
Example 7 illustrates calculation of sample quantiles using M-estimation and approximation of the \(\psi\) function.
\[ \psi(Y_{1i}, \theta) = \begin{pmatrix} 0.5 - I(Y_{1i} \leq \theta_1) \\ \end{pmatrix} \]
SB7_estFUN <- function(data){
Y1 <- data$Y1
function(theta){
0.5 - (Y1 <= theta[1])
}
}
Note that \(\psi\) is not
differentiable; however, geex
includes the ability to
approximate the \(\psi\) function via
an approx_control
object. The FUN
in an
approx_control
must be a function that takes in the \(\psi\) function, modifies it, and returns a
function of theta
. For this example, I approximate \(\psi\) with a spline function. The
eval_theta
argument is used to modify the basis of the
spline.
spline_approx <- function(psi, eval_theta){
y <- Vectorize(psi)(eval_theta)
f <- splinefun(x = eval_theta, y = y)
function(theta) f(theta)
}
estimates <- m_estimate(
estFUN = SB7_estFUN,
data = geexex,
root_control = setup_root_control(start = 4.7),
approx_control = setup_approx_control(FUN = spline_approx,
eval_theta = seq(3, 6, by = .05)))
A comparison of the variance is not obvious, so no comparison is made.
## $geex
## $geex$parameters
## [1] 4.7
##
## $geex$vcov
## [,1]
## [1,] 0.1773569
##
##
## $cls
## $cls$parameters
## [1] 4.708489
##
## $cls$vcov
## [1] NA
Example 8 demonstrates robust regression for estimating \(\beta\) from 100 observations generated from \(Y_4 = 0.1 + 0.1 X_{1i} + 0.5 X_{2i} + \epsilon_i\), where \(\epsilon_i \sim N(0, 1)\), \(X_1\) is defined as above, and the first half of the observation have \(X_{2i} = 1\) and the others have \(X_{2i} = 0\).
\[ \psi_k(Y_{4i}, \theta) = \begin{pmatrix} \psi_k(Y_{4i} - \mathbf{x}_i^T \beta) \mathbf{x}_i \end{pmatrix} \]
psi_k <- function(x, k = 1.345){
if(abs(x) <= k) x else sign(x) * k
}
SB8_estFUN <- function(data){
Yi <- data$Y4
xi <- model.matrix(Y4 ~ X1 + X2, data = data)
function(theta){
r <- Yi - xi %*% theta
c(psi_k(r) %*% xi)
}
}
estimates <- m_estimate(
estFUN = SB8_estFUN,
data = geexex,
root_control = setup_root_control(start = c(0, 0, 0)))
results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)),
cls = list(parameters = theta_cls, vcov = Sigma_cls))
results
## $geex
## $geex$parameters
## [1] -0.04050369 0.14530196 0.30181589
##
## $geex$vcov
## [,1] [,2] [,3]
## [1,] 0.05871932 -0.0101399730 -0.0133230841
## [2,] -0.01013997 0.0021854268 0.0003386202
## [3,] -0.01332308 0.0003386202 0.0447117633
##
##
## $cls
## $cls$parameters
## (Intercept) X1 X2
## -0.0377206 0.1441181 0.2988842
##
## $cls$vcov
## (Intercept) X1 X2
## (Intercept) 0.07309914 -0.0103060747 -0.0241724792
## X1 -0.01030607 0.0020579145 0.0005364106
## X2 -0.02417248 0.0005364106 0.0431120686
Example 9 illustrates estimation of a generalized linear model.
\[ \psi(Y_i, \theta) = \begin{pmatrix} D_i(\beta)\frac{Y_i - \mu_i(\beta)}{V_i(\beta) \tau} \end{pmatrix} \]
SB9_estFUN <- function(data){
Y <- data$Y5
X <- model.matrix(Y5 ~ X1 + X2, data = data, drop = FALSE)
function(theta){
lp <- X %*% theta
mu <- plogis(lp)
D <- t(X) %*% dlogis(lp)
V <- mu * (1 - mu)
D %*% solve(V) %*% (Y - mu)
}
}
estimates <- m_estimate(
estFUN = SB9_estFUN,
data = geexex,
root_control = setup_root_control(start = c(.1, .1, .5)))
Compare point estimates to glm
coefficients and
covariance matrix to sandwich
.
m9 <- glm(Y5 ~ X1 + X2, data = geexex, family = binomial(link = 'logit'))
theta_cls <- coef(m9)
Sigma_cls <- sandwich::sandwich(m9)
results <- list(geex = list(parameters = coef(estimates), vcov = vcov(estimates)),
cls = list(parameters = theta_cls, vcov = Sigma_cls))
results
## $geex
## $geex$parameters
## [1] -1.1256071 0.3410619 -0.1148368
##
## $geex$vcov
## [,1] [,2] [,3]
## [1,] 0.35202094 -0.058906883 -0.101528787
## [2,] -0.05890688 0.012842435 0.004357355
## [3,] -0.10152879 0.004357355 0.185455144
##
##
## $cls
## $cls$parameters
## (Intercept) X1 X2
## -1.1256070 0.3410619 -0.1148368
##
## $cls$vcov
## (Intercept) X1 X2
## (Intercept) 0.35201039 -0.058903546 -0.101534539
## X1 -0.05890355 0.012841392 0.004358926
## X2 -0.10153454 0.004358926 0.185456314
Example 10 illustrates testing equality of success probablities.
\[ \psi(Y_i, n_i, \theta) = \begin{pmatrix} \frac{(Y_i - n_i \theta_2)^2}{n_i \theta_2( 1 - \theta_2 )} - \theta_1 \\ Y_i - n_i \theta_2 \end{pmatrix} \]
SB10_estFUN <- function(data){
Y <- data$ft_made
n <- data$ft_attp
function(theta){
p <- theta[2]
c(((Y - (n * p))^2)/(n * p * (1 - p)) - theta[1],
Y - n * p)
}
}
estimates <- m_estimate(
estFUN = SB10_estFUN,
data = shaq,
units = 'game',
root_control = setup_root_control(start = c(.5, .5)))
V11 <- function(p) {
k <- nrow(shaq)
sumn <- sum(shaq$ft_attp)
sumn_inv <- sum(1/shaq$ft_attp)
term2_n <- 1 - (6 * p) + (6 * p^2)
term2_d <- p * (1 - p)
term2 <- term2_n/term2_d
term3 <- ((1 - (2 * p))^2) / ((sumn/k) * p * (1 - p))
2 + (term2 * (1/k) * sumn_inv) - term3
}
p_tilde <- sum(shaq$ft_made)/sum(shaq$ft_attp)
V11_hat <- V11(p_tilde)/23
# Compare variance estimates
V11_hat
## [1] 0.0783097
vcov(estimates)[1, 1]
## [1] 0.1929791
# Note the differences in the p-values
pnorm(35.51/23, mean = 1, sd = sqrt(V11_hat), lower.tail = FALSE)
## [1] 0.02596785
## [1] 0.1078138
This example shows that the empircal sandwich variance estimator may be different from other sandwich variance estimators that make assumptions about the structure of the \(A\) and \(B\) matrices.