M-estimation theory provides a framework for asympotic properties of estimators that are solutions to estimating equations. Many R packages implement specific applications of estimating equations. geex aims to be provide a more general framework that any modelling method can use to compute point and variance estimates for parameters that are solutions to estimating equations of the form: $$\sum_i \psi(O_i, \hat{\theta}) = 0$$

m_estimate(
  estFUN,
  data,
  units = character(0),
  weights = numeric(0),
  outer_args = list(),
  inner_args = list(),
  roots = NULL,
  compute_roots = TRUE,
  compute_vcov = TRUE,
  Asolver = solve,
  corrections,
  deriv_control,
  root_control,
  approx_control
)

Arguments

estFUN

a function that takes in group-level data and returns a function that takes parameters as its first argument

data

a data.frame

units

an optional character string identifying the grouping variable in data

weights

an optional vector of weights. See details.

outer_args

a list of arguments passed to the outer (data) function of estFUN. (optional)

inner_args

a list of arguments passed to the inner (theta) function of estFUN. (optional)

roots

a vector of parameter estimates must be provided if compute_roots = FALSE

compute_roots

whether or not to find the roots of the estimating equations. Defaults to TRUE.

compute_vcov

whether or not to compute the variance-covariance matrix. Defaults to TRUE.

Asolver

a function passed to compute_sigma used to compute the inverse of the "bread" matrix. Defaults to solve.

corrections

an optional list of small sample corrections where each list element is a correct_control object which contains two elements: correctFUN and correctFUN_options. The function correction constructs correct_control objects. See details for more information.

deriv_control

a deriv_control object

root_control

a root_control object

approx_control

a approx_control object

Value

a geex object

Details

The basic idea of geex is for the analyst to provide at least two items:

  • data

  • estFUN: (the \(\psi\) function), a function that takes unit-level data and returns a function in terms of parameters (\(\theta\))

With the estFUN, geex computes the roots of the estimating equations and/or the empirical sandwich variance estimator.

The root finding algorithm defaults to multiroot to estimate roots though the solver algorithm can be specified in the rootFUN argument. Starting values for multiroot are passed via the root_control argument. See vignette("v03_root_solvers", package = "geex") for information on customizing the root solver function.

To compute only the covariance matrix, set compute_roots = FALSE and pass estimates of \(\theta\) via the roots argument.

M-estimation is often used for clustered data, and a variable by which to split the data.frame into independent units is specified by the units argument. This argument defaults to NULL, in which case the number of units equals the number of rows in the data.frame.

For information on the finite-sample corrections, refer to the finite sample correction API vignette: vignette("v05_finite_sample_corrections", package = "geex")

Writing an estFUN

Description

An estFUN is a function representing \(\psi\). geex works by breaking \(\psi\) into two parts:

  • the "outer" part of the estFUN which manipulates data and outer_args and returns an

  • "inner" function of theta and inner_args. Internally, this "inner" function is called psiFUN.

In pseudo-code this looks like:


function(data, <<outer_args>>){
  O <- manipulate(data, <<outer_args>>)
  function(theta, <<inner_args>>){
    map(O, to = theta, and = <<inner_args>>)
  }
}

See the examples below or the package vignettes to see an estFUN in action.

Importantly, the data used in an estFUN is *unit* level data, which may be single rows in a data.frame or block of rows for clustered data.

Additional arguments

Additional arguments may be passed to both the inner and outer function of the estFUN. Elements in an outer_args list are passed to the outer function; any elements of the inner_args list are passed to the inner function. For an example, see the finite sample correction vignette [ vignette("v05_finite_sample_corrections", package = "geex")].

Setting up root_control

To estimate roots of the estimating functions, geex uses the rootSolve multiroot function by default, which requires starting values. The root_control argument expects a root_control object, which the utility function setup_root_control aids in creating. For example, setup_root_control(start = 4) creates a root_control setting the starting value to 4. In general, the dimension of start must the same as theta in the inner estFUN.

Using weights

In some situations, use of weights can massively speed computations. Refer to vignette("v04_weights", package = "geex") for an example.

References

Stefanski, L. A., & Boos, D. D. (2002). The calculus of M-estimation. The American Statistician, 56(1), 29-38.

Examples

# Estimate the mean and variance of Y1 in the geexex dataset
ex_eeFUN <- function(data){
 function(theta){
   with(data,
    c(Y1 - theta[1],
     (Y1 - theta[1])^2 - theta[2] ))
}}

m_estimate(
 estFUN = ex_eeFUN,
 data  = geexex,
 root_control = setup_root_control(start = c(1,1)))
#> An object of class "geex"
#> Slot "call":
#> m_estimate(estFUN = ex_eeFUN, data = geexex, root_control = setup_root_control(start = c(1, 
#>     1)))
#> 
#> Slot "basis":
#> An object of class "m_estimation_basis"
#> Slot ".data":
#>              Y1          Y2        X1        Y3        W1        Z1 X2
#> 1    3.66830660  2.02817177  4.949316 16.345756  4.823768  8.921782  0
#> 2   10.45245483  1.64329659  7.851962 25.687417  7.884845 13.909474  0
#> 3    3.12341064  2.85262638  4.729075 16.108307  4.709346  9.014695  0
#> 4    8.37150253  2.51336525  2.564395 10.579970  2.786091  6.733378  0
#> 5   -0.83197489  3.01820300  4.782347 16.464013  4.811590  9.290492  0
#> 6    3.39877632  0.97852092  5.335713 18.325769  5.415370 10.322199  0
#> 7    1.89433086  1.43833173  1.386442  5.577536  1.240995  3.497873  0
#> 8    3.52281395  0.98744392  3.453377 13.074664  3.632010  7.894598  0
#> 9    9.96040583 -1.02081430  2.958662 10.050725  2.752347  5.612733  0
#> 10   4.57026477  2.33235027  7.591370 24.414247  7.501404 13.027192  0
#> 11   5.69037402  3.24051157  6.812940 22.528706  6.835412 12.309296  0
#> 12   6.01840507  2.67134960  2.481492  9.540750  2.505561  5.818512  0
#> 13   2.54186468  0.66996589  3.307246 11.720103  3.256837  6.759235  0
#> 14  -0.71686038  1.14941969  2.366527  9.839421  2.551487  6.289631  0
#> 15   3.67609826  0.21116926  6.308752 21.049635  6.339597 11.586507  0
#> 16   5.51354425  3.23152191  2.280638  8.812598  2.273309  5.391641  0
#> 17   9.07247997  1.66560033  2.872154 10.227607  2.774940  5.919377  0
#> 18   3.97770523  1.03267790  4.361465 15.595252  4.489179  9.053054  0
#> 19   3.78983596  2.87937035  3.573053 11.805345  3.344600  6.445765  0
#> 20  11.46076273  1.74642131  5.556376 20.979426  6.133951 12.644862  0
#> 21   1.90514658  0.48212421  7.752991 24.820884  7.643469 13.191397  0
#> 22   6.69600961  1.97611674  6.030068 20.854263  6.221083 11.809162  0
#> 23   2.66421207  2.02665947  4.213262 14.901747  4.278752  8.581854  0
#> 24   6.66014272  2.16368120  2.923132 11.542799  3.116483  7.158102  0
#> 25  -1.18104663  2.41000794  5.156830 16.656110  4.953235  8.920865  0
#> 26   2.92500198  1.37263740  5.519839 18.121067  5.410226  9.841308  0
#> 27   3.88083378  2.63691800  5.477283 17.711627  5.297228  9.495703  0
#> 28   9.02982953  0.79806522  4.055430 14.397234  4.113166  8.314089  0
#> 29   3.12172019  3.34654241  4.319714 13.801412  4.030281  7.321841  0
#> 30   6.19158815  1.40123269 10.283894 33.098758 10.345663 17.672917  0
#> 31   3.32882227  2.44220444  2.557841  9.582409  2.535063  5.745648  0
#> 32   1.59847689  2.61352641 11.152742 37.215603 11.592086 20.486489  0
#> 33   7.75618478  1.70090363  2.538047  9.476212  2.503565  5.669141  0
#> 34   3.15921522  0.39941190  7.939765 25.708101  7.911967 13.798454  0
#> 35  10.39273751  1.66053304  3.629295 12.197870  3.456791  6.753928  0
#> 36   6.77228554  1.41869225  5.644317 18.711156  5.588868 10.244681  0
#> 37   4.39629525  1.60963799  1.385403  6.339116  1.431130  4.261012  0
#> 38   6.82219543  2.84551436  3.651563 13.372011  3.755894  7.894667  0
#> 39   4.83938127  2.68472721  2.075987  9.293362  2.342337  6.179382  0
#> 40   6.82448417  2.23771308  7.947636 26.813109  8.190186 14.891656  0
#> 41   3.36629988  1.28937811  3.893624 13.579242  3.868217  7.738807  0
#> 42  -3.54597542  4.61331896  4.399113 16.600543  4.749914 10.001873  0
#> 43   5.62728767  0.37335265  2.019187  6.280784  1.574993  3.252004  0
#> 44   7.64019560  0.39269371 10.182047 33.169007 10.337763 17.895937  0
#> 45   1.07266235  2.34031745  4.471305 14.891632  4.340734  8.184674  0
#> 46   0.54542518  4.72788771  5.445723 19.659399  5.776280 11.490815  0
#> 47   3.25060929  1.67280996  5.030453 16.727920  4.939593  9.182240  0
#> 48   2.93555501  0.74310325  7.586987 26.080025  7.916753 14.699546  0
#> 49   6.67598396  1.56860189  9.452187 30.400340  9.463132 16.222060  0
#> 50   5.53662175  4.54885325  8.141977 24.547274  7.672313 12.334309  0
#> 51   9.13874582  1.22859200  5.623052 18.422092  5.511286  9.987515  1
#> 52  11.61401290  1.49265765  5.066275 15.460228  4.631626  7.860815  1
#> 53   4.92821273  1.72997742  2.174904  8.703576  2.219620  5.441220  1
#> 54   4.90318672  2.74811656  1.373871  8.019078  1.848237  5.958272  1
#> 55   6.00098760  2.66859381  4.252394 12.485257  3.684413  6.106666  1
#> 56   3.65150186  1.54470134  1.844766  8.514763  2.089882  5.747614  1
#> 57   4.54658518  0.07215478  6.257311 19.373108  5.907605  9.987141  1
#> 58   4.60446834  3.88197707  7.640542 26.746499  8.096760 15.285686  1
#> 59   6.05634729  0.75028887  3.400547 13.582939  3.745871  8.482119  1
#> 60   5.55593474  1.51065503  3.879217 12.798800  3.669504  6.979974  1
#> 61   4.03092200  2.21539129  5.044494 16.871488  4.978996  9.304746  1
#> 62   5.23612553  2.42210867  3.724228 13.103840  3.707017  7.517498  1
#> 63   4.29091253  0.77885172  3.209739 11.250332  3.115018  6.435724  1
#> 64   8.17872107  2.31222782  3.503141 15.091380  4.148630  9.836670  1
#> 65   5.02695115  2.88646213  3.588984 12.896787  3.621443  7.513311  1
#> 66   2.48083883  2.47481069  2.572586  9.004733  2.394330  5.145854  1
#> 67   3.99004087  2.86984135  2.321320  9.601955  2.480819  6.119975  1
#> 68   2.23831135  1.11347620  7.354859 24.266268  7.405282 13.233980  1
#> 69   5.81016858  1.87134447  1.780620  7.271942  1.763140  4.601012  1
#> 70   8.38552575  3.09651049  2.438272  9.222328  2.415150  5.564919  1
#> 71   7.52829625  2.51802955  4.870025 17.058979  4.982251  9.753941  1
#> 72   5.80565410  2.39803318  6.107551 19.258297  5.841462 10.096971  1
#> 73   4.63571743  3.06665941  3.068762 10.043868  2.778158  5.440724  1
#> 74   6.15793650  1.55045992  8.069649 27.857468  8.481779 15.752995  1
#> 75   4.78126024  2.62610198  2.564135  7.630308  2.048611  3.784106  1
#> 76  -3.16739941  1.18116405  6.700594 22.114532  6.703782 12.063641  1
#> 77   6.43347697  1.73648379  5.381833 17.057971  5.109951  8.985221  1
#> 78   3.50959659  2.15457529 12.644899 40.205236 12.712534 21.237888  1
#> 79  10.07323536  2.56844555  2.037142  9.119878  2.289255  6.064165  1
#> 80  13.67440127 -0.66015968  5.883640 17.576515  5.365039  8.751055  1
#> 81   0.04110863  3.13653254  7.093428 24.177106  7.317634 13.536964  1
#> 82   7.35949555  2.42177278  4.873831 16.571498  4.861332  9.260751  1
#> 83   5.49607715  3.35008260  8.291038 25.527766  7.954701 13.091208  1
#> 84   2.90516885  3.10375689  4.051026 12.221867  3.568223  6.145328  1
#> 85   7.48091201  2.64704611  7.689539 25.778200  7.866935 14.243891  1
#> 86   7.83288634  2.17563581  4.933636 16.643004  4.894160  9.242550  1
#> 87   4.62720660  2.65355779  5.774989 19.541334  5.829081 10.878851  1
#> 88   3.81921320  1.93450970  4.483566 16.268060  4.687907  9.542711  1
#> 89   0.65673908  2.64552217  2.739769 11.946482  3.171563  7.836829  1
#> 90   2.50073977  2.36429404  5.286464 17.755621  5.260521  9.825925  1
#> 91   4.06797383  2.84344157  3.701213 12.546517  3.561933  6.994698  1
#> 92   3.99673254  1.32352113  5.795986 20.816259  6.153061 12.122280  1
#> 93   8.81558134  1.60856710  4.883292 15.756919  4.660053  8.431981  1
#> 94   3.93610997  2.40494064  7.172253 22.359187  6.882860 11.600808  1
#> 95  12.58110379  0.89314130  3.340735 11.491910  3.208161  6.480807  1
#> 96   3.28003669  1.61669959  7.262549 26.233329  7.873969 15.339506  1
#> 97  11.30218798  2.29402025  1.940701  6.989609  1.732577  4.078556  1
#> 98   5.64776480  3.79306067  5.958475 20.288944  6.061855 11.351232  1
#> 99   0.65818837  2.81403217  4.432708 14.119440  4.138037  7.470379  1
#> 100  7.30774920  0.67997560  3.283518 10.676520  2.990010  5.751243  1
#>               Y4 Y5
#> 1    0.092739260  1
#> 2    1.016727357  1
#> 3    0.493990392  0
#> 4    1.243224329  0
#> 5    0.695205988  1
#> 6    0.952201378  1
#> 7   -0.343146465  0
#> 8    1.159870423  0
#> 9   -0.429393276  0
#> 10   0.499274828  1
#> 11   0.871180147  1
#> 12   0.444423658  0
#> 13   0.229090617  1
#> 14   1.076493168  0
#> 15   0.854254673  1
#> 16   0.298747112  0
#> 17  -0.001638862  0
#> 18   1.047002780  1
#> 19  -0.456508875  1
#> 20   2.965934470  0
#> 21   0.437209150  0
#> 22   1.467067372  0
#> 23   0.783287466  0
#> 24   1.165717760  0
#> 25  -0.198696160  1
#> 26   0.213533342  1
#> 27  -0.072493261  1
#> 28   0.736487513  1
#> 29  -0.625758090  1
#> 30   1.375465405  1
#> 31   0.264670535  0
#> 32   2.972649859  1
#> 33   0.215875121  1
#> 34   0.782782994  1
#> 35  -0.227084853  1
#> 36   0.442637449  1
#> 37   0.421447969  0
#> 38   0.882479555  0
#> 39   1.373000995  1
#> 40   1.864965592  1
#> 41   0.387733146  1
#> 42   1.943114799  1
#> 43  -1.474856978  0
#> 44   1.741072051  1
#> 45   0.024847168  1
#> 46   1.966803213  1
#> 47   0.239605022  0
#> 48   2.177764398  1
#> 49   1.088997768  1
#> 50  -0.964458223  1
#> 51   0.715242972  1
#> 52  -0.631970427  1
#> 53   0.996355205  0
#> 54   2.634852773  1
#> 55  -1.246686055  1
#> 56   1.764940768  0
#> 57  -0.173094497  1
#> 58   3.188926631  1
#> 59   2.321353405  1
#> 60   0.149069864  0
#> 61   0.842453670  1
#> 62   0.903578781  0
#> 63   0.542090297  1
#> 64   3.532272980  0
#> 65   1.088732578  1
#> 66   0.144233610  1
#> 67   1.470126269  0
#> 68   1.537177460  0
#> 69   0.708145014  1
#> 70   0.751337374  0
#> 71   1.535905791  1
#> 72   0.146399418  0
#> 73  -0.255543077  0
#> 74   3.055486628  0
#> 75  -1.205682549  1
#> 76   1.282809142  1
#> 77   0.050654962  1
#> 78   2.135029369  1
#> 79   1.812166070  1
#> 80  -0.886040754  1
#> 81   2.206165066  1
#> 82   1.037387368  1
#> 83   0.083754535  0
#> 84  -0.926108918  0
#> 85   2.078535519  1
#> 86   0.935458616  0
#> 87   1.393866742  0
#> 88   1.865718680  0
#> 89   2.601152645  0
#> 90   1.024876085  1
#> 91   0.412999035  1
#> 92   2.607900007  0
#> 93   0.195371813  1
#> 94   0.159654048  1
#> 95   0.403777090  0
#> 96   3.771937632  1
#> 97  -0.038425654  1
#> 98   1.609367331  0
#> 99  -0.135412360  1
#> 100 -0.245682938  0
#> 
#> Slot ".units":
#> character(0)
#> 
#> Slot ".weights":
#> numeric(0)
#> 
#> Slot ".psiFUN_list":
#> $`1`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04149af8>
#> 
#> $`2`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041489e8>
#> 
#> $`3`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0414d858>
#> 
#> $`4`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0414c5c0>
#> 
#> $`5`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0414f3f8>
#> 
#> $`6`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0414e320>
#> 
#> $`7`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04151190>
#> 
#> $`8`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04154000>
#> 
#> $`9`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04152f60>
#> 
#> $`10`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04155dd0>
#> 
#> $`11`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04154cf8>
#> 
#> $`12`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04157b30>
#> 
#> $`13`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04156978>
#> 
#> $`14`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04159078>
#> 
#> $`15`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0415bb30>
#> 
#> $`16`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0417c5f8>
#> 
#> $`17`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0417edd8>
#> 
#> $`18`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041819e0>
#> 
#> $`19`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0418eeb8>
#> 
#> $`20`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04191b68>
#> 
#> $`21`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04190630>
#> 
#> $`22`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04193318>
#> 
#> $`23`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041960e0>
#> 
#> $`24`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04194f60>
#> 
#> $`25`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04197cf0>
#> 
#> $`26`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04196ba8>
#> 
#> $`27`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea04199970>
#> 
#> $`28`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041987f0>
#> 
#> $`29`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0419b5b8>
#> 
#> $`30`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0419a2e8>
#> 
#> $`31`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0419d0b0>
#> 
#> $`32`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0419fe08>
#> 
#> $`33`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea0419ec50>
#> 
#> $`34`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a3890>
#> 
#> $`35`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a2748>
#> 
#> $`36`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a54d8>
#> 
#> $`37`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a4390>
#> 
#> $`38`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a7190>
#> 
#> $`39`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a9f20>
#> 
#> $`40`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041a8dd8>
#> 
#> $`41`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041abba0>
#> 
#> $`42`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041aa908>
#> 
#> $`43`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ad628>
#> 
#> $`44`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ac3c8>
#> 
#> $`45`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041af238>
#> 
#> $`46`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b2070>
#> 
#> $`47`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b0f98>
#> 
#> $`48`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b5d98>
#> 
#> $`49`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b4cf8>
#> 
#> $`50`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b7b68>
#> 
#> $`51`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b6ac8>
#> 
#> $`52`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b9778>
#> 
#> $`53`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041b8518>
#> 
#> $`54`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041bb388>
#> 
#> $`55`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ba2b0>
#> 
#> $`56`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041bcf60>
#> 
#> $`57`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041bfd98>
#> 
#> $`58`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041becf8>
#> 
#> $`59`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c1970>
#> 
#> $`60`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c0898>
#> 
#> $`61`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c5708>
#> 
#> $`62`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c4668>
#> 
#> $`63`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c7350>
#> 
#> $`64`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c6278>
#> 
#> $`65`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041c90e8>
#> 
#> $`66`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041cbf58>
#> 
#> $`67`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041cacf8>
#> 
#> $`68`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041cdb68>
#> 
#> $`69`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ccac8>
#> 
#> $`70`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041cf7b0>
#> 
#> $`71`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ce6a0>
#> 
#> $`72`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d1510>
#> 
#> $`73`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d0438>
#> 
#> $`74`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d5270>
#> 
#> $`75`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d80a8>
#> 
#> $`76`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d6e10>
#> 
#> $`77`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d9af8>
#> 
#> $`78`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041d89e8>
#> 
#> $`79`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041db858>
#> 
#> $`80`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041da668>
#> 
#> $`81`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041dd430>
#> 
#> $`82`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041dc2e8>
#> 
#> $`83`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041de748>
#> 
#> $`84`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e15b8>
#> 
#> $`85`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e0278>
#> 
#> $`86`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e50e8>
#> 
#> $`87`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e7cb8>
#> 
#> $`88`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e6b00>
#> 
#> $`89`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e9740>
#> 
#> $`90`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041e8438>
#> 
#> $`91`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041eadd8>
#> 
#> $`92`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041eda18>
#> 
#> $`93`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ec8d0>
#> 
#> $`94`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041ef4a0>
#> 
#> $`95`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041f20a8>
#> 
#> $`96`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041f0c50>
#> 
#> $`97`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041f5858>
#> 
#> $`98`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041f4710>
#> 
#> $`99`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041f7318>
#> 
#> $`100`
#> function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }
#> <environment: 0x7fea041f9f58>
#> 
#> 
#> Slot ".GFUN":
#> function (theta) 
#> {
#>     psii <- lapply(psi_list, function(psi) {
#>         do.call(psi, args = append(list(theta = theta), object@.inner_args))
#>     })
#>     compute_sum_of_list(psii, object@.weights)
#> }
#> <environment: 0x7fea04235740>
#> 
#> Slot ".control":
#> An object of class "geex_control"
#> Slot ".approx":
#> An object of class "approx_control"
#> Slot ".FUN":
#> function () 
#> NULL
#> <bytecode: 0x7fea4759ffd0>
#> 
#> Slot ".options":
#> list()
#> 
#> 
#> Slot ".root":
#> An object of class "root_control"
#> Slot ".object_name":
#> [1] "root"
#> 
#> Slot ".FUN":
#> function (f, start, maxiter = 100, rtol = 1e-06, atol = 1e-08, 
#>     ctol = 1e-08, useFortran = TRUE, positive = FALSE, jacfunc = NULL, 
#>     jactype = "fullint", verbose = FALSE, bandup = 1, banddown = 1, 
#>     parms = NULL, ...) 
#> {
#>     initfunc <- NULL
#>     if (is.list(f)) {
#>         if (!is.null(jacfunc) & "jacfunc" %in% names(f)) 
#>             stop("If 'f' is a list that contains jacfunc, argument 'jacfunc' should be NULL")
#>         jacfunc <- f$jacfunc
#>         initfunc <- f$initfunc
#>         f <- f$func
#>     }
#>     N <- length(start)
#>     if (!is.numeric(start)) 
#>         stop("start conditions should be numeric")
#>     if (!is.numeric(maxiter)) 
#>         stop("`maxiter' must be numeric")
#>     if (as.integer(maxiter) < 1) 
#>         stop("maxiter must be >=1")
#>     if (!is.numeric(rtol)) 
#>         stop("`rtol' must be numeric")
#>     if (!is.numeric(atol)) 
#>         stop("`atol' must be numeric")
#>     if (!is.numeric(ctol)) 
#>         stop("`ctol' must be numeric")
#>     if (length(atol) > 1 && length(atol) != N) 
#>         stop("`atol' must either be a scalar, or as long as `start'")
#>     if (length(rtol) > 1 && length(rtol) != N) 
#>         stop("`rtol' must either be a scalar, or as long as `y'")
#>     if (length(ctol) > 1) 
#>         stop("`ctol' must be a scalar")
#>     if (useFortran) {
#>         if (!is.compiled(f) & is.null(parms)) {
#>             Fun1 <- function(time = 0, x, parms = NULL) list(f(x, 
#>                 ...))
#>             Fun <- Fun1
#>         }
#>         else if (!is.compiled(f)) {
#>             Fun2 <- function(time = 0, x, parms) list(f(x, parms, 
#>                 ...))
#>             Fun <- Fun2
#>         }
#>         else {
#>             Fun <- f
#>             f <- function(x, ...) Fun(n = length(start), t = 0, 
#>                 x, f = rep(0, length(start)), 1, 1)$f
#>         }
#>         JacFunc <- jacfunc
#>         if (!is.null(jacfunc)) 
#>             if (!is.compiled(JacFunc) & is.null(parms)) 
#>                 JacFunc <- function(time = 0, x, parms = parms) jacfunc(x, 
#>                   ...)
#>             else if (!is.compiled(JacFunc)) 
#>                 JacFunc <- function(time = 0, x, parms = parms) jacfunc(x, 
#>                   parms, ...)
#>             else JacFunc <- jacfunc
#>         method <- "stode"
#>         if (jactype == "sparse") {
#>             method <- "stodes"
#>             if (!is.null(jacfunc)) 
#>                 stop("jacfunc can not be used when jactype='sparse'")
#>             x <- stodes(y = start, time = 0, func = Fun, atol = atol, 
#>                 positive = positive, rtol = rtol, ctol = ctol, 
#>                 maxiter = maxiter, verbose = verbose, parms = parms, 
#>                 initfunc = initfunc)
#>         }
#>         else x <- steady(y = start, time = 0, func = Fun, atol = atol, 
#>             positive = positive, rtol = rtol, ctol = ctol, maxiter = maxiter, 
#>             method = method, jacfunc = JacFunc, jactype = jactype, 
#>             verbose = verbose, parms = parms, initfunc = initfunc, 
#>             bandup = bandup, banddown = banddown)
#>         precis <- attr(x, "precis")
#>         attributes(x) <- NULL
#>         x <- unlist(x)
#>         if (is.null(parms)) 
#>             reffx <- f(x, ...)
#>         else reffx <- f(x, parms, ...)
#>         i <- length(precis)
#>     }
#>     else {
#>         if (is.compiled(f)) 
#>             stop("cannot combine compiled code with R-implemented solver")
#>         precis <- NULL
#>         x <- start
#>         jacob <- matrix(nrow = N, ncol = N, data = 0)
#>         if (is.null(parms)) 
#>             reffx <- f(x, ...)
#>         else reffx <- f(x, parms, ...)
#>         if (length(reffx) != N) 
#>             stop("'f', function must return as many function values as elements in start")
#>         for (i in 1:maxiter) {
#>             refx <- x
#>             pp <- mean(abs(reffx))
#>             precis <- c(precis, pp)
#>             ewt <- rtol * abs(x) + atol
#>             if (max(abs(reffx/ewt)) < 1) 
#>                 break
#>             delt <- perturb(x)
#>             for (j in 1:N) {
#>                 x[j] <- x[j] + delt[j]
#>                 if (is.null(parms)) 
#>                   fx <- f(x, ...)
#>                 else fx <- f(x, parms, ...)
#>                 jacob[, j] <- (fx - reffx)/delt[j]
#>                 x[j] <- refx[j]
#>             }
#>             relchange <- as.numeric(solve(jacob, -1 * reffx))
#>             if (max(abs(relchange)) < ctol) 
#>                 break
#>             x <- x + relchange
#>             if (is.null(parms)) 
#>                 reffx <- f(x, ...)
#>             else reffx <- f(x, parms, ...)
#>         }
#>     }
#>     names(x) <- names(start)
#>     return(list(root = x, f.root = reffx, iter = i, estim.precis = precis[length(precis)]))
#> }
#> <bytecode: 0x7fea475c8ef8>
#> <environment: namespace:rootSolve>
#> 
#> Slot ".options":
#> $start
#> [1] 1 1
#> 
#> 
#> 
#> Slot ".deriv":
#> An object of class "deriv_control"
#> Slot ".FUN":
#> function (func, x, method = "Richardson", side = NULL, method.args = list(), 
#>     ...) 
#> UseMethod("jacobian")
#> <bytecode: 0x7fea475bf7f0>
#> <environment: namespace:numDeriv>
#> 
#> Slot ".options":
#> $method
#> [1] "Richardson"
#> 
#> 
#> 
#> 
#> Slot ".estFUN":
#> function(data){
#>  function(theta){
#>    with(data,
#>     c(Y1 - theta[1],
#>      (Y1 - theta[1])^2 - theta[2] ))
#> }}
#> <environment: 0x7fea467e2df8>
#> 
#> Slot ".outer_args":
#> list()
#> 
#> Slot ".inner_args":
#> list()
#> 
#> 
#> Slot "rootFUN_results":
#> $root
#> [1]  5.044563 10.041239
#> 
#> $f.root
#> [1] -2.131628e-14 -2.238210e-13
#> 
#> $iter
#> [1] 4
#> 
#> $estim.precis
#> [1] 1.225686e-13
#> 
#> 
#> Slot "sandwich_components":
#> An object of class "sandwich_components"
#> Slot ".A":
#>               [,1] [,2]
#> [1,]  1.000000e+02    0
#> [2,] -1.517693e-10  100
#> 
#> Slot ".A_i":
#> $`1`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.752514    1
#> 
#> $`2`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] 10.81578    1
#> 
#> $`3`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.842305    1
#> 
#> $`4`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 6.653878    1
#> 
#> $`5`
#>           [,1] [,2]
#> [1,]   1.00000    0
#> [2,] -11.75308    1
#> 
#> $`6`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.291574    1
#> 
#> $`7`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -6.300465    1
#> 
#> $`8`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.043499    1
#> 
#> $`9`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 9.831685    1
#> 
#> $`10`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.9485972    1
#> 
#> $`11`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.291621    1
#> 
#> $`12`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.947683    1
#> 
#> $`13`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -5.005397    1
#> 
#> $`14`
#>           [,1] [,2]
#> [1,]   1.00000    0
#> [2,] -11.52285    1
#> 
#> $`15`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] -2.73693    1
#> 
#> $`16`
#>           [,1] [,2]
#> [1,] 1.0000000    0
#> [2,] 0.9379618    1
#> 
#> $`17`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 8.055833    1
#> 
#> $`18`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.133716    1
#> 
#> $`19`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.509455    1
#> 
#> $`20`
#>         [,1] [,2]
#> [1,]  1.0000    0
#> [2,] 12.8324    1
#> 
#> $`21`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -6.278834    1
#> 
#> $`22`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 3.302893    1
#> 
#> $`23`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -4.760703    1
#> 
#> $`24`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 3.231159    1
#> 
#> $`25`
#>           [,1] [,2]
#> [1,]   1.00000    0
#> [2,] -12.45122    1
#> 
#> $`26`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -4.239123    1
#> 
#> $`27`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.327459    1
#> 
#> $`28`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 7.970532    1
#> 
#> $`29`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.845686    1
#> 
#> $`30`
#>         [,1] [,2]
#> [1,] 1.00000    0
#> [2,] 2.29405    1
#> 
#> $`31`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.431482    1
#> 
#> $`32`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -6.892173    1
#> 
#> $`33`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 5.423243    1
#> 
#> $`34`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.770696    1
#> 
#> $`35`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] 10.69635    1
#> 
#> $`36`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 3.455444    1
#> 
#> $`37`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -1.296536    1
#> 
#> $`38`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 3.555264    1
#> 
#> $`39`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.4103641    1
#> 
#> $`40`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 3.559842    1
#> 
#> $`41`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.356527    1
#> 
#> $`42`
#>           [,1] [,2]
#> [1,]   1.00000    0
#> [2,] -17.18108    1
#> 
#> $`43`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.165449    1
#> 
#> $`44`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 5.191265    1
#> 
#> $`45`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -7.943802    1
#> 
#> $`46`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -8.998276    1
#> 
#> $`47`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.587908    1
#> 
#> $`48`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -4.218017    1
#> 
#> $`49`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 3.262841    1
#> 
#> $`50`
#>           [,1] [,2]
#> [1,] 1.0000000    0
#> [2,] 0.9841168    1
#> 
#> $`51`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 8.188365    1
#> 
#> $`52`
#>         [,1] [,2]
#> [1,]  1.0000    0
#> [2,] 13.1389    1
#> 
#> $`53`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.2327012    1
#> 
#> $`54`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.2827533    1
#> 
#> $`55`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.912849    1
#> 
#> $`56`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.786123    1
#> 
#> $`57`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.9959563    1
#> 
#> $`58`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] -0.88019    1
#> 
#> $`59`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 2.023568    1
#> 
#> $`60`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.022743    1
#> 
#> $`61`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.027283    1
#> 
#> $`62`
#>           [,1] [,2]
#> [1,] 1.0000000    0
#> [2,] 0.3831244    1
#> 
#> $`63`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -1.507302    1
#> 
#> $`64`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 6.268315    1
#> 
#> $`65`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.0352244    1
#> 
#> $`66`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -5.127449    1
#> 
#> $`67`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.109045    1
#> 
#> $`68`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -5.612504    1
#> 
#> $`69`
#>         [,1] [,2]
#> [1,] 1.00000    0
#> [2,] 1.53121    1
#> 
#> $`70`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 6.681925    1
#> 
#> $`71`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 4.967466    1
#> 
#> $`72`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.522182    1
#> 
#> $`73`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.8176918    1
#> 
#> $`74`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 2.226746    1
#> 
#> $`75`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.5266062    1
#> 
#> $`76`
#>           [,1] [,2]
#> [1,]   1.00000    0
#> [2,] -16.42393    1
#> 
#> $`77`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 2.777827    1
#> 
#> $`78`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.069934    1
#> 
#> $`79`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] 10.05734    1
#> 
#> $`80`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] 17.25968    1
#> 
#> $`81`
#>           [,1] [,2]
#> [1,]   1.00000    0
#> [2,] -10.00691    1
#> 
#> $`82`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 4.629864    1
#> 
#> $`83`
#>           [,1] [,2]
#> [1,] 1.0000000    0
#> [2,] 0.9030276    1
#> 
#> $`84`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -4.278789    1
#> 
#> $`85`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 4.872697    1
#> 
#> $`86`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 5.576646    1
#> 
#> $`87`
#>            [,1] [,2]
#> [1,]  1.0000000    0
#> [2,] -0.8347135    1
#> 
#> $`88`
#>         [,1] [,2]
#> [1,]  1.0000    0
#> [2,] -2.4507    1
#> 
#> $`89`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -8.775649    1
#> 
#> $`90`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -5.087647    1
#> 
#> $`91`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -1.953179    1
#> 
#> $`92`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.095662    1
#> 
#> $`93`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 7.542036    1
#> 
#> $`94`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -2.216907    1
#> 
#> $`95`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] 15.07308    1
#> 
#> $`96`
#>           [,1] [,2]
#> [1,]  1.000000    0
#> [2,] -3.529053    1
#> 
#> $`97`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] 12.51525    1
#> 
#> $`98`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 1.206403    1
#> 
#> $`99`
#>          [,1] [,2]
#> [1,]  1.00000    0
#> [2,] -8.77275    1
#> 
#> $`100`
#>          [,1] [,2]
#> [1,] 1.000000    0
#> [2,] 4.526372    1
#> 
#> 
#> Slot ".B":
#>           [,1]       [,2]
#> [1,] 1004.1239   366.7969
#> [2,]  366.7969 24921.9638
#> 
#> Slot ".B_i":
#> $`1`
#>           [,1]     [,2]
#> [1,]  1.894083 11.21258
#> [2,] 11.212579 66.37615
#> 
#> $`2`
#>           [,1]     [,2]
#> [1,]  29.24529 103.8534
#> [2,] 103.85343 368.7956
#> 
#> $`3`
#>           [,1]     [,2]
#> [1,]  3.690828 12.20011
#> [2,] 12.200110 40.32772
#> 
#> $`4`
#>           [,1]     [,2]
#> [1,] 11.068524 3.417716
#> [2,]  3.417716 1.055315
#> 
#> $`5`
#>           [,1]      [,2]
#> [1,]   34.5337 -143.9309
#> [2,] -143.9309  599.8807
#> 
#> $`6`
#>           [,1]     [,2]
#> [1,]  2.708615 12.06794
#> [2,] 12.067937 53.76737
#> 
#> $`7`
#>           [,1]       [,2]
#> [1,] 9.9239647 0.36944079
#> [2,] 0.3694408 0.01375322
#> 
#> $`8`
#>           [,1]     [,2]
#> [1,]  2.315721 11.75630
#> [2,] 11.756302 59.68362
#> 
#> $`9`
#>          [,1]      [,2]
#> [1,] 24.16551  69.43268
#> [2,] 69.43268 199.49496
#> 
#> $`10`
#>           [,1]      [,2]
#> [1,] 0.2249591  4.655848
#> [2,] 4.6558475 96.359348
#> 
#> $`11`
#>            [,1]     [,2]
#> [1,]  0.4170714 -6.21539
#> [2,] -6.2153901 92.62460
#> 
#> $`12`
#>            [,1]      [,2]
#> [1,]  0.9483677 -8.855017
#> [2,] -8.8550173 82.680306
#> 
#> $`13`
#>          [,1]      [,2]
#> [1,] 6.263501  9.454541
#> [2,] 9.454541 14.271306
#> 
#> $`14`
#>           [,1]      [,2]
#> [1,]   33.1940 -133.3929
#> [2,] -133.3929  536.0505
#> 
#> $`15`
#>           [,1]     [,2]
#> [1,]  1.872697 11.17836
#> [2,] 11.178365 66.72508
#> 
#> $`16`
#>            [,1]     [,2]
#> [1,]  0.2199431 -4.60600
#> [2,] -4.6060002 96.45785
#> 
#> $`17`
#>          [,1]     [,2]
#> [1,] 16.22411 24.90410
#> [2,] 24.90410 38.22792
#> 
#> $`18`
#>          [,1]      [,2]
#> [1,] 1.138186  9.498294
#> [2,] 9.498294 79.264346
#> 
#> $`19`
#>           [,1]     [,2]
#> [1,]  1.574341 10.62365
#> [2,] 10.623649 71.68836
#> 
#> $`20`
#>           [,1]     [,2]
#> [1,]  41.16761 199.7130
#> [2,] 199.71303 968.8513
#> 
#> $`21`
#>           [,1]       [,2]
#> [1,] 9.8559376 0.58173782
#> [2,] 0.5817378 0.03433655
#> 
#> $`22`
#>            [,1]      [,2]
#> [1,]   2.727275 -12.07862
#> [2,] -12.078619  53.49407
#> 
#> $`23`
#>           [,1]     [,2]
#> [1,]  5.666072 10.41443
#> [2,] 10.414434 19.14208
#> 
#> $`24`
#>            [,1]      [,2]
#> [1,]   2.610097 -12.00560
#> [2,] -12.005600  55.22187
#> 
#> $`25`
#>            [,1]      [,2]
#> [1,]   38.75822 -178.7807
#> [2,] -178.78072  824.6650
#> 
#> $`26`
#>          [,1]     [,2]
#> [1,]  4.49254 11.76081
#> [2,] 11.76081 30.78805
#> 
#> $`27`
#>           [,1]     [,2]
#> [1,]  1.354266 10.10929
#> [2,] 10.109287 75.46349
#> 
#> $`28`
#>          [,1]     [,2]
#> [1,] 15.88235 23.27837
#> [2,] 23.27837 34.11854
#> 
#> $`29`
#>           [,1]     [,2]
#> [1,]  3.697326 12.19835
#> [2,] 12.198350 40.24523
#> 
#> $`30`
#>            [,1]      [,2]
#> [1,]   1.315666 -10.00845
#> [2,] -10.008449  76.13562
#> 
#> $`31`
#>           [,1]     [,2]
#> [1,]  2.943767 12.17742
#> [2,] 12.177423 50.37410
#> 
#> $`32`
#>           [,1]      [,2]
#> [1,] 11.875512 -6.321063
#> [2,] -6.321063  3.364557
#> 
#> $`33`
#>           [,1]      [,2]
#> [1,]  7.352891 -7.289782
#> [2,] -7.289782  7.227215
#> 
#> $`34`
#>           [,1]     [,2]
#> [1,]  3.554538 12.22969
#> [2,] 12.229690 42.07729
#> 
#> $`35`
#>          [,1]      [,2]
#> [1,] 28.60297  99.27135
#> [2,] 99.27135 344.53775
#> 
#> $`36`
#>            [,1]      [,2]
#> [1,]   2.985024 -12.19118
#> [2,] -12.191179  49.79017
#> 
#> $`37`
#>           [,1]      [,2]
#> [1,] 0.4202515  6.236979
#> [2,] 6.2369792 92.563397
#> 
#> $`38`
#>            [,1]      [,2]
#> [1,]   3.159976 -12.23235
#> [2,] -12.232354  47.35178
#> 
#> $`39`
#>            [,1]      [,2]
#> [1,] 0.04209968  2.051644
#> [2,] 2.05164409 99.982784
#> 
#> $`40`
#>            [,1]      [,2]
#> [1,]   3.168118 -12.23361
#> [2,] -12.233611  47.23979
#> 
#> $`41`
#>           [,1]     [,2]
#> [1,]  2.816568 12.12490
#> [2,] 12.124901 52.19587
#> 
#> $`42`
#>            [,1]      [,2]
#> [1,]   73.79736 -547.6994
#> [2,] -547.69940 4064.8425
#> 
#> $`43`
#>            [,1]     [,2]
#> [1,]  0.3395676 -5.65340
#> [2,] -5.6533998 94.12242
#> 
#> $`44`
#>           [,1]      [,2]
#> [1,]  6.737307 -8.575793
#> [2,] -8.575793 10.915967
#> 
#> $`45`
#>           [,1]      [,2]
#> [1,]  15.77600 -22.77789
#> [2,] -22.77789  32.88746
#> 
#> $`46`
#>           [,1]      [,2]
#> [1,]  20.24224 -45.89573
#> [2,] -45.89573 104.06051
#> 
#> $`47`
#>           [,1]     [,2]
#> [1,]  3.218271 12.24009
#> [2,] 12.240091 46.55289
#> 
#> $`48`
#>           [,1]     [,2]
#> [1,]  4.447916 11.79636
#> [2,] 11.796364 31.28526
#> 
#> $`49`
#>            [,1]      [,2]
#> [1,]   2.661533 -12.03940
#> [2,] -12.039404  54.46006
#> 
#> $`50`
#>            [,1]      [,2]
#> [1,]  0.2421215 -4.821738
#> [2,] -4.8217380 96.022702
#> 
#> $`51`
#>          [,1]     [,2]
#> [1,] 16.76233 27.51737
#> [2,] 27.51737 45.17307
#> 
#> $`52`
#>           [,1]      [,2]
#> [1,]  43.15767  217.5567
#> [2,] 217.55671 1096.6978
#> 
#> $`53`
#>            [,1]       [,2]
#> [1,] 0.01353747   1.166729
#> [2,] 1.16672924 100.554795
#> 
#> $`54`
#>            [,1]       [,2]
#> [1,] 0.01998735   1.416771
#> [2,] 1.41677076 100.425482
#> 
#> $`55`
#>            [,1]      [,2]
#> [1,]  0.9147474 -8.728798
#> [2,] -8.7287978 83.292847
#> 
#> $`56`
#>          [,1]     [,2]
#> [1,]  1.94062 11.28466
#> [2,] 11.28466 65.62002
#> 
#> $`57`
#>           [,1]      [,2]
#> [1,] 0.2479823  4.876828
#> [2,] 4.8768280 95.907875
#> 
#> $`58`
#>           [,1]     [,2]
#> [1,] 0.1936836  4.33386
#> [2,] 4.3338599 96.97434
#> 
#> $`59`
#>           [,1]      [,2]
#> [1,]  1.023707 -9.123794
#> [2,] -9.123794 81.315885
#> 
#> $`60`
#>            [,1]      [,2]
#> [1,]  0.2615007 -5.001078
#> [2,] -5.0010784 95.643278
#> 
#> $`61`
#>          [,1]     [,2]
#> [1,] 1.027469  9.13673
#> [2,] 9.136730 81.24805
#> 
#> $`62`
#>             [,1]       [,2]
#> [1,]  0.03669607  -1.916492
#> [2,] -1.91649203 100.090877
#> 
#> $`63`
#>           [,1]      [,2]
#> [1,] 0.5679896  7.139522
#> [2,] 7.1395221 89.742452
#> 
#> $`64`
#>            [,1]        [,2]
#> [1,]  9.8229447 -0.68416849
#> [2,] -0.6841685  0.04765236
#> 
#> $`65`
#>              [,1]        [,2]
#> [1,] 0.0003101896   0.1768428
#> [2,] 0.1768428421 100.8202487
#> 
#> $`66`
#>          [,1]      [,2]
#> [1,] 6.572683  8.892421
#> [2,] 8.892421 12.030877
#> 
#> $`67`
#>          [,1]      [,2]
#> [1,] 1.112018  9.416064
#> [2,] 9.416064 79.730991
#> 
#> $`68`
#>          [,1]     [,2]
#> [1,] 7.875050 6.078871
#> [2,] 6.078871 4.692373
#> 
#> $`69`
#>            [,1]      [,2]
#> [1,]  0.5861514 -7.238864
#> [2,] -7.2388645 89.398679
#> 
#> $`70`
#>          [,1]     [,2]
#> [1,] 11.16203 3.744520
#> [2,]  3.74452 1.256172
#> 
#> $`71`
#>           [,1]      [,2]
#> [1,]  6.168929 -9.617783
#> [2,] -9.617783 14.994783
#> 
#> $`72`
#>            [,1]      [,2]
#> [1,]  0.5792591 -7.201425
#> [2,] -7.2014253 89.529060
#> 
#> $`73`
#>          [,1]      [,2]
#> [1,] 0.167155  4.036979
#> [2,] 4.036979 97.497532
#> 
#> $`74`
#>           [,1]      [,2]
#> [1,]  1.239600 -9.799509
#> [2,] -9.799509 77.468851
#> 
#> $`75`
#>            [,1]      [,2]
#> [1,] 0.06932852  2.625635
#> [2,] 2.62563494 99.438996
#> 
#> $`76`
#>            [,1]      [,2]
#> [1,]   67.43633 -471.3264
#> [2,] -471.32637 3294.1968
#> 
#> $`77`
#>            [,1]      [,2]
#> [1,]   1.929081 -11.26709
#> [2,] -11.267086  65.80710
#> 
#> $`78`
#>           [,1]     [,2]
#> [1,]  2.356123 11.79640
#> [2,] 11.796397 59.06101
#> 
#> $`79`
#>          [,1]      [,2]
#> [1,] 25.28754  76.66866
#> [2,] 76.66866 232.44977
#> 
#> $`80`
#>          [,1]      [,2]
#> [1,]  74.4741  556.0452
#> [2,] 556.0452 4151.5939
#> 
#> $`81`
#>           [,1]     [,2]
#> [1,]  25.03456 -75.0184
#> [2,] -75.01840 224.7997
#> 
#> $`82`
#>            [,1]      [,2]
#> [1,]   5.358911 -10.83927
#> [2,] -10.839271  21.92419
#> 
#> $`83`
#>            [,1]     [,2]
#> [1,]  0.2038647 -4.44171
#> [2,] -4.4417103 96.77393
#> 
#> $`84`
#>           [,1]     [,2]
#> [1,]  4.577009 11.69014
#> [2,] 11.690144 29.85781
#> 
#> $`85`
#>            [,1]      [,2]
#> [1,]   5.935795 -10.00229
#> [2,] -10.002293  16.85467
#> 
#> $`86`
#>           [,1]      [,2]
#> [1,]  7.774745 -6.319717
#> [2,] -6.319717  5.136994
#> 
#> $`87`
#>           [,1]      [,2]
#> [1,] 0.1741867  4.118081
#> [2,] 4.1180809 97.358719
#> 
#> $`88`
#>           [,1]     [,2]
#> [1,]  1.501483 10.46419
#> [2,] 10.464191 72.92743
#> 
#> $`89`
#>          [,1]      [,2]
#> [1,]  19.2530 -40.41960
#> [2,] -40.4196  84.85658
#> 
#> $`90`
#>          [,1]     [,2]
#> [1,] 6.471038  9.08196
#> [2,] 9.081960 12.74633
#> 
#> $`91`
#>           [,1]      [,2]
#> [1,] 0.9537271  8.874769
#> [2,] 8.8747688 82.582870
#> 
#> $`92`
#>          [,1]      [,2]
#> [1,] 1.097949  9.371054
#> [2,] 9.371054 79.982427
#> 
#> $`93`
#>          [,1]     [,2]
#> [1,] 14.22058 15.76036
#> [2,] 15.76036 17.46687
#> 
#> $`94`
#>          [,1]      [,2]
#> [1,] 1.228669  9.768323
#> [2,] 9.768323 77.661390
#> 
#> $`95`
#>           [,1]      [,2]
#> [1,]  56.79944  352.3951
#> [2,] 352.39509 2186.3295
#> 
#> $`96`
#>           [,1]     [,2]
#> [1,]  3.113554 12.22408
#> [2,] 12.224084 47.99281
#> 
#> $`97`
#>           [,1]     [,2]
#> [1,]  39.15787 182.2009
#> [2,] 182.20092 847.7780
#> 
#> $`98`
#>           [,1]      [,2]
#> [1,]  0.363852 -5.837414
#> [2,] -5.837414 93.651817
#> 
#> $`99`
#>           [,1]      [,2]
#> [1,]  19.24029 -40.35047
#> [2,] -40.35047  84.62246
#> 
#> $`100`
#>           [,1]      [,2]
#> [1,]   5.12201 -11.13313
#> [2,] -11.13313  24.19881
#> 
#> 
#> Slot ".ee_i":
#> $`1`
#> [1] -1.376257 -8.147156
#> 
#> $`2`
#> [1]  5.407891 19.204051
#> 
#> $`3`
#> [1] -1.921153 -6.350411
#> 
#> $`4`
#> [1] 3.326939 1.027285
#> 
#> $`5`
#> [1] -5.876538 24.492463
#> 
#> $`6`
#> [1] -1.645787 -7.332624
#> 
#> $`7`
#> [1] -3.1502325 -0.1172741
#> 
#> $`8`
#> [1] -1.521749 -7.725518
#> 
#> $`9`
#> [1]  4.915842 14.124269
#> 
#> $`10`
#> [1] -0.4742986 -9.8162797
#> 
#> $`11`
#> [1]  0.6458107 -9.6241674
#> 
#> $`12`
#> [1]  0.9738417 -9.0928712
#> 
#> $`13`
#> [1] -2.502699 -3.777738
#> 
#> $`14`
#> [1] -5.761424 23.152765
#> 
#> $`15`
#> [1] -1.368465 -8.168542
#> 
#> $`16`
#> [1]  0.4689809 -9.8212958
#> 
#> $`17`
#> [1] 4.027917 6.182873
#> 
#> $`18`
#> [1] -1.066858 -8.903053
#> 
#> $`19`
#> [1] -1.254727 -8.466898
#> 
#> $`20`
#> [1]  6.416199 31.126376
#> 
#> $`21`
#> [1] -3.1394168 -0.1853012
#> 
#> $`22`
#> [1]  1.651446 -7.313964
#> 
#> $`23`
#> [1] -2.380351 -4.375167
#> 
#> $`24`
#> [1]  1.615579 -7.431142
#> 
#> $`25`
#> [1] -6.22561 28.71698
#> 
#> $`26`
#> [1] -2.119561 -5.548698
#> 
#> $`27`
#> [1] -1.163730 -8.686972
#> 
#> $`28`
#> [1] 3.985266 5.841108
#> 
#> $`29`
#> [1] -1.922843 -6.343913
#> 
#> $`30`
#> [1]  1.147025 -8.725573
#> 
#> $`31`
#> [1] -1.715741 -7.097471
#> 
#> $`32`
#> [1] -3.446086  1.834273
#> 
#> $`33`
#> [1]  2.711621 -2.688348
#> 
#> $`34`
#> [1] -1.885348 -6.486701
#> 
#> $`35`
#> [1]  5.348174 18.561728
#> 
#> $`36`
#> [1]  1.727722 -7.056215
#> 
#> $`37`
#> [1] -0.6482681 -9.6209873
#> 
#> $`38`
#> [1]  1.777632 -6.881263
#> 
#> $`39`
#> [1] -0.2051821 -9.9991392
#> 
#> $`40`
#> [1]  1.779921 -6.873121
#> 
#> $`41`
#> [1] -1.678263 -7.224671
#> 
#> $`42`
#> [1] -8.590539 63.756117
#> 
#> $`43`
#> [1]  0.5827243 -9.7016712
#> 
#> $`44`
#> [1]  2.595632 -3.303932
#> 
#> $`45`
#> [1] -3.971901  5.734759
#> 
#> $`46`
#> [1] -4.499138 10.201005
#> 
#> $`47`
#> [1] -1.793954 -6.822968
#> 
#> $`48`
#> [1] -2.109008 -5.593323
#> 
#> $`49`
#> [1]  1.631421 -7.379706
#> 
#> $`50`
#> [1]  0.4920584 -9.7991174
#> 
#> $`51`
#> [1] 4.094182 6.721091
#> 
#> $`52`
#> [1]  6.56945 33.11643
#> 
#> $`53`
#> [1]  -0.1163506 -10.0277014
#> 
#> $`54`
#> [1]  -0.1413766 -10.0212515
#> 
#> $`55`
#> [1]  0.9564243 -9.1264915
#> 
#> $`56`
#> [1] -1.393061 -8.100619
#> 
#> $`57`
#> [1] -0.4979782 -9.7932566
#> 
#> $`58`
#> [1] -0.440095 -9.847555
#> 
#> $`59`
#> [1]  1.011784 -9.017532
#> 
#> $`60`
#> [1]  0.5113714 -9.7797382
#> 
#> $`61`
#> [1] -1.013641 -9.013770
#> 
#> $`62`
#> [1]   0.1915622 -10.0045428
#> 
#> $`63`
#> [1] -0.7536508 -9.4732493
#> 
#> $`64`
#> [1]  3.1341577 -0.2182942
#> 
#> $`65`
#> [1]  -0.0176122 -10.0409287
#> 
#> $`66`
#> [1] -2.563725 -3.468555
#> 
#> $`67`
#> [1] -1.054522 -8.929221
#> 
#> $`68`
#> [1] -2.806252 -2.166189
#> 
#> $`69`
#> [1]  0.7656052 -9.4550875
#> 
#> $`70`
#> [1] 3.340962 1.120791
#> 
#> $`71`
#> [1]  2.483733 -3.872310
#> 
#> $`72`
#> [1]  0.7610908 -9.4619797
#> 
#> $`73`
#> [1] -0.4088459 -9.8740839
#> 
#> $`74`
#> [1]  1.113373 -8.801639
#> 
#> $`75`
#> [1] -0.2633031 -9.9719103
#> 
#> $`76`
#> [1] -8.211963 57.395094
#> 
#> $`77`
#> [1]  1.388914 -8.112158
#> 
#> $`78`
#> [1] -1.534967 -7.685116
#> 
#> $`79`
#> [1]  5.028672 15.246303
#> 
#> $`80`
#> [1]  8.629838 64.432864
#> 
#> $`81`
#> [1] -5.003455 14.993320
#> 
#> $`82`
#> [1]  2.314932 -4.682328
#> 
#> $`83`
#> [1]  0.4515138 -9.8373741
#> 
#> $`84`
#> [1] -2.139394 -5.464230
#> 
#> $`85`
#> [1]  2.436349 -4.105444
#> 
#> $`86`
#> [1]  2.788323 -2.266494
#> 
#> $`87`
#> [1] -0.4173568 -9.8670522
#> 
#> $`88`
#> [1] -1.225350 -8.539756
#> 
#> $`89`
#> [1] -4.387824  9.211763
#> 
#> $`90`
#> [1] -2.543824 -3.570200
#> 
#> $`91`
#> [1] -0.9765895 -9.0875118
#> 
#> $`92`
#> [1] -1.047831 -8.943289
#> 
#> $`93`
#> [1] 3.771018 4.179338
#> 
#> $`94`
#> [1] -1.108453 -8.812570
#> 
#> $`95`
#> [1]  7.53654 46.75820
#> 
#> $`96`
#> [1] -1.764527 -6.927685
#> 
#> $`97`
#> [1]  6.257625 29.116627
#> 
#> $`98`
#> [1]  0.6032015 -9.6773869
#> 
#> $`99`
#> [1] -4.386375  9.199047
#> 
#> $`100`
#> [1]  2.263186 -4.919229
#> 
#> 
#> 
#> Slot "GFUN":
#> function () 
#> NULL
#> <bytecode: 0x7fea4756b2b0>
#> 
#> Slot "corrections":
#> list()
#> 
#> Slot "estimates":
#> [1]  5.044563 10.041239
#> 
#> Slot "vcov":
#>            [,1]       [,2]
#> [1,] 0.10041239 0.03667969
#> [2,] 0.03667969 2.49219638
#> 

# compare to the mean() and variance() functions
mean(geexex$Y1)
#> [1] 5.044563
n <- nrow(geexex)
var(geexex$Y1) * (n - 1)/n
#> [1] 10.04124

# A simple linear model for regressing X1 and X2 on Y4
lm_eefun <- function(data){
 X <- cbind(1, data$X1, data$X2)
 Y <- data$Y4
 function(theta){
    t(X) %*% (Y - X %*% theta)
   }
 }

m_estimate(
 estFUN = lm_eefun,
 data  = geexex,
 root_control = setup_root_control(start = c(0, 0, 0)))
#> An object of class "geex"
#> Slot "call":
#> m_estimate(estFUN = lm_eefun, data = geexex, root_control = setup_root_control(start = c(0, 
#>     0, 0)))
#> 
#> Slot "basis":
#> An object of class "m_estimation_basis"
#> Slot ".data":
#>              Y1          Y2        X1        Y3        W1        Z1 X2
#> 1    3.66830660  2.02817177  4.949316 16.345756  4.823768  8.921782  0
#> 2   10.45245483  1.64329659  7.851962 25.687417  7.884845 13.909474  0
#> 3    3.12341064  2.85262638  4.729075 16.108307  4.709346  9.014695  0
#> 4    8.37150253  2.51336525  2.564395 10.579970  2.786091  6.733378  0
#> 5   -0.83197489  3.01820300  4.782347 16.464013  4.811590  9.290492  0
#> 6    3.39877632  0.97852092  5.335713 18.325769  5.415370 10.322199  0
#> 7    1.89433086  1.43833173  1.386442  5.577536  1.240995  3.497873  0
#> 8    3.52281395  0.98744392  3.453377 13.074664  3.632010  7.894598  0
#> 9    9.96040583 -1.02081430  2.958662 10.050725  2.752347  5.612733  0
#> 10   4.57026477  2.33235027  7.591370 24.414247  7.501404 13.027192  0
#> 11   5.69037402  3.24051157  6.812940 22.528706  6.835412 12.309296  0
#> 12   6.01840507  2.67134960  2.481492  9.540750  2.505561  5.818512  0
#> 13   2.54186468  0.66996589  3.307246 11.720103  3.256837  6.759235  0
#> 14  -0.71686038  1.14941969  2.366527  9.839421  2.551487  6.289631  0
#> 15   3.67609826  0.21116926  6.308752 21.049635  6.339597 11.586507  0
#> 16   5.51354425  3.23152191  2.280638  8.812598  2.273309  5.391641  0
#> 17   9.07247997  1.66560033  2.872154 10.227607  2.774940  5.919377  0
#> 18   3.97770523  1.03267790  4.361465 15.595252  4.489179  9.053054  0
#> 19   3.78983596  2.87937035  3.573053 11.805345  3.344600  6.445765  0
#> 20  11.46076273  1.74642131  5.556376 20.979426  6.133951 12.644862  0
#> 21   1.90514658  0.48212421  7.752991 24.820884  7.643469 13.191397  0
#> 22   6.69600961  1.97611674  6.030068 20.854263  6.221083 11.809162  0
#> 23   2.66421207  2.02665947  4.213262 14.901747  4.278752  8.581854  0
#> 24   6.66014272  2.16368120  2.923132 11.542799  3.116483  7.158102  0
#> 25  -1.18104663  2.41000794  5.156830 16.656110  4.953235  8.920865  0
#> 26   2.92500198  1.37263740  5.519839 18.121067  5.410226  9.841308  0
#> 27   3.88083378  2.63691800  5.477283 17.711627  5.297228  9.495703  0
#> 28   9.02982953  0.79806522  4.055430 14.397234  4.113166  8.314089  0
#> 29   3.12172019  3.34654241  4.319714 13.801412  4.030281  7.321841  0
#> 30   6.19158815  1.40123269 10.283894 33.098758 10.345663 17.672917  0
#> 31   3.32882227  2.44220444  2.557841  9.582409  2.535063  5.745648  0
#> 32   1.59847689  2.61352641 11.152742 37.215603 11.592086 20.486489  0
#> 33   7.75618478  1.70090363  2.538047  9.476212  2.503565  5.669141  0
#> 34   3.15921522  0.39941190  7.939765 25.708101  7.911967 13.798454  0
#> 35  10.39273751  1.66053304  3.629295 12.197870  3.456791  6.753928  0
#> 36   6.77228554  1.41869225  5.644317 18.711156  5.588868 10.244681  0
#> 37   4.39629525  1.60963799  1.385403  6.339116  1.431130  4.261012  0
#> 38   6.82219543  2.84551436  3.651563 13.372011  3.755894  7.894667  0
#> 39   4.83938127  2.68472721  2.075987  9.293362  2.342337  6.179382  0
#> 40   6.82448417  2.23771308  7.947636 26.813109  8.190186 14.891656  0
#> 41   3.36629988  1.28937811  3.893624 13.579242  3.868217  7.738807  0
#> 42  -3.54597542  4.61331896  4.399113 16.600543  4.749914 10.001873  0
#> 43   5.62728767  0.37335265  2.019187  6.280784  1.574993  3.252004  0
#> 44   7.64019560  0.39269371 10.182047 33.169007 10.337763 17.895937  0
#> 45   1.07266235  2.34031745  4.471305 14.891632  4.340734  8.184674  0
#> 46   0.54542518  4.72788771  5.445723 19.659399  5.776280 11.490815  0
#> 47   3.25060929  1.67280996  5.030453 16.727920  4.939593  9.182240  0
#> 48   2.93555501  0.74310325  7.586987 26.080025  7.916753 14.699546  0
#> 49   6.67598396  1.56860189  9.452187 30.400340  9.463132 16.222060  0
#> 50   5.53662175  4.54885325  8.141977 24.547274  7.672313 12.334309  0
#> 51   9.13874582  1.22859200  5.623052 18.422092  5.511286  9.987515  1
#> 52  11.61401290  1.49265765  5.066275 15.460228  4.631626  7.860815  1
#> 53   4.92821273  1.72997742  2.174904  8.703576  2.219620  5.441220  1
#> 54   4.90318672  2.74811656  1.373871  8.019078  1.848237  5.958272  1
#> 55   6.00098760  2.66859381  4.252394 12.485257  3.684413  6.106666  1
#> 56   3.65150186  1.54470134  1.844766  8.514763  2.089882  5.747614  1
#> 57   4.54658518  0.07215478  6.257311 19.373108  5.907605  9.987141  1
#> 58   4.60446834  3.88197707  7.640542 26.746499  8.096760 15.285686  1
#> 59   6.05634729  0.75028887  3.400547 13.582939  3.745871  8.482119  1
#> 60   5.55593474  1.51065503  3.879217 12.798800  3.669504  6.979974  1
#> 61   4.03092200  2.21539129  5.044494 16.871488  4.978996  9.304746  1
#> 62   5.23612553  2.42210867  3.724228 13.103840  3.707017  7.517498  1
#> 63   4.29091253  0.77885172  3.209739 11.250332  3.115018  6.435724  1
#> 64   8.17872107  2.31222782  3.503141 15.091380  4.148630  9.836670  1
#> 65   5.02695115  2.88646213  3.588984 12.896787  3.621443  7.513311  1
#> 66   2.48083883  2.47481069  2.572586  9.004733  2.394330  5.145854  1
#> 67   3.99004087  2.86984135  2.321320  9.601955  2.480819  6.119975  1
#> 68   2.23831135  1.11347620  7.354859 24.266268  7.405282 13.233980  1
#> 69   5.81016858  1.87134447  1.780620  7.271942  1.763140  4.601012  1
#> 70   8.38552575  3.09651049  2.438272  9.222328  2.415150  5.564919  1
#> 71   7.52829625  2.51802955  4.870025 17.058979  4.982251  9.753941  1
#> 72   5.80565410  2.39803318  6.107551 19.258297  5.841462 10.096971  1
#> 73   4.63571743  3.06665941  3.068762 10.043868  2.778158  5.440724  1
#> 74   6.15793650  1.55045992  8.069649 27.857468  8.481779 15.752995  1
#> 75   4.78126024  2.62610198  2.564135  7.630308  2.048611  3.784106  1
#> 76  -3.16739941  1.18116405  6.700594 22.114532  6.703782 12.063641  1
#> 77   6.43347697  1.73648379  5.381833 17.057971  5.109951  8.985221  1
#> 78   3.50959659  2.15457529 12.644899 40.205236 12.712534 21.237888  1
#> 79  10.07323536  2.56844555  2.037142  9.119878  2.289255  6.064165  1
#> 80  13.67440127 -0.66015968  5.883640 17.576515  5.365039  8.751055  1
#> 81   0.04110863  3.13653254  7.093428 24.177106  7.317634 13.536964  1
#> 82   7.35949555  2.42177278  4.873831 16.571498  4.861332  9.260751  1
#> 83   5.49607715  3.35008260  8.291038 25.527766  7.954701 13.091208  1
#> 84   2.90516885  3.10375689  4.051026 12.221867  3.568223  6.145328  1
#> 85   7.48091201  2.64704611  7.689539 25.778200  7.866935 14.243891  1
#> 86   7.83288634  2.17563581  4.933636 16.643004  4.894160  9.242550  1
#> 87   4.62720660  2.65355779  5.774989 19.541334  5.829081 10.878851  1
#> 88   3.81921320  1.93450970  4.483566 16.268060  4.687907  9.542711  1
#> 89   0.65673908  2.64552217  2.739769 11.946482  3.171563  7.836829  1
#> 90   2.50073977  2.36429404  5.286464 17.755621  5.260521  9.825925  1
#> 91   4.06797383  2.84344157  3.701213 12.546517  3.561933  6.994698  1
#> 92   3.99673254  1.32352113  5.795986 20.816259  6.153061 12.122280  1
#> 93   8.81558134  1.60856710  4.883292 15.756919  4.660053  8.431981  1
#> 94   3.93610997  2.40494064  7.172253 22.359187  6.882860 11.600808  1
#> 95  12.58110379  0.89314130  3.340735 11.491910  3.208161  6.480807  1
#> 96   3.28003669  1.61669959  7.262549 26.233329  7.873969 15.339506  1
#> 97  11.30218798  2.29402025  1.940701  6.989609  1.732577  4.078556  1
#> 98   5.64776480  3.79306067  5.958475 20.288944  6.061855 11.351232  1
#> 99   0.65818837  2.81403217  4.432708 14.119440  4.138037  7.470379  1
#> 100  7.30774920  0.67997560  3.283518 10.676520  2.990010  5.751243  1
#>               Y4 Y5
#> 1    0.092739260  1
#> 2    1.016727357  1
#> 3    0.493990392  0
#> 4    1.243224329  0
#> 5    0.695205988  1
#> 6    0.952201378  1
#> 7   -0.343146465  0
#> 8    1.159870423  0
#> 9   -0.429393276  0
#> 10   0.499274828  1
#> 11   0.871180147  1
#> 12   0.444423658  0
#> 13   0.229090617  1
#> 14   1.076493168  0
#> 15   0.854254673  1
#> 16   0.298747112  0
#> 17  -0.001638862  0
#> 18   1.047002780  1
#> 19  -0.456508875  1
#> 20   2.965934470  0
#> 21   0.437209150  0
#> 22   1.467067372  0
#> 23   0.783287466  0
#> 24   1.165717760  0
#> 25  -0.198696160  1
#> 26   0.213533342  1
#> 27  -0.072493261  1
#> 28   0.736487513  1
#> 29  -0.625758090  1
#> 30   1.375465405  1
#> 31   0.264670535  0
#> 32   2.972649859  1
#> 33   0.215875121  1
#> 34   0.782782994  1
#> 35  -0.227084853  1
#> 36   0.442637449  1
#> 37   0.421447969  0
#> 38   0.882479555  0
#> 39   1.373000995  1
#> 40   1.864965592  1
#> 41   0.387733146  1
#> 42   1.943114799  1
#> 43  -1.474856978  0
#> 44   1.741072051  1
#> 45   0.024847168  1
#> 46   1.966803213  1
#> 47   0.239605022  0
#> 48   2.177764398  1
#> 49   1.088997768  1
#> 50  -0.964458223  1
#> 51   0.715242972  1
#> 52  -0.631970427  1
#> 53   0.996355205  0
#> 54   2.634852773  1
#> 55  -1.246686055  1
#> 56   1.764940768  0
#> 57  -0.173094497  1
#> 58   3.188926631  1
#> 59   2.321353405  1
#> 60   0.149069864  0
#> 61   0.842453670  1
#> 62   0.903578781  0
#> 63   0.542090297  1
#> 64   3.532272980  0
#> 65   1.088732578  1
#> 66   0.144233610  1
#> 67   1.470126269  0
#> 68   1.537177460  0
#> 69   0.708145014  1
#> 70   0.751337374  0
#> 71   1.535905791  1
#> 72   0.146399418  0
#> 73  -0.255543077  0
#> 74   3.055486628  0
#> 75  -1.205682549  1
#> 76   1.282809142  1
#> 77   0.050654962  1
#> 78   2.135029369  1
#> 79   1.812166070  1
#> 80  -0.886040754  1
#> 81   2.206165066  1
#> 82   1.037387368  1
#> 83   0.083754535  0
#> 84  -0.926108918  0
#> 85   2.078535519  1
#> 86   0.935458616  0
#> 87   1.393866742  0
#> 88   1.865718680  0
#> 89   2.601152645  0
#> 90   1.024876085  1
#> 91   0.412999035  1
#> 92   2.607900007  0
#> 93   0.195371813  1
#> 94   0.159654048  1
#> 95   0.403777090  0
#> 96   3.771937632  1
#> 97  -0.038425654  1
#> 98   1.609367331  0
#> 99  -0.135412360  1
#> 100 -0.245682938  0
#> 
#> Slot ".units":
#> character(0)
#> 
#> Slot ".weights":
#> numeric(0)
#> 
#> Slot ".psiFUN_list":
#> $`1`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04c85f58>
#> 
#> $`2`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04c96070>
#> 
#> $`3`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04ca0b00>
#> 
#> $`4`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04ca2208>
#> 
#> $`5`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04cb7f90>
#> 
#> $`6`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04cc30e8>
#> 
#> $`7`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04cc4400>
#> 
#> $`8`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04cc9d98>
#> 
#> $`9`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04ccdbd8>
#> 
#> $`10`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04cd0f98>
#> 
#> $`11`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d14898>
#> 
#> $`12`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d22ac8>
#> 
#> $`13`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d2c358>
#> 
#> $`14`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d35e78>
#> 
#> $`15`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d37cf0>
#> 
#> $`16`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d398c8>
#> 
#> $`17`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d45430>
#> 
#> $`18`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d46e10>
#> 
#> $`19`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d48da0>
#> 
#> $`20`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d4aba8>
#> 
#> $`21`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d4c780>
#> 
#> $`22`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d56860>
#> 
#> $`23`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d5ceb8>
#> 
#> $`24`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d5eac8>
#> 
#> $`25`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d609b0>
#> 
#> $`26`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d622b0>
#> 
#> $`27`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d7be78>
#> 
#> $`28`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d7dd60>
#> 
#> $`29`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d7fcb8>
#> 
#> $`30`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d81a50>
#> 
#> $`31`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d83858>
#> 
#> $`32`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d85430>
#> 
#> $`33`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d893c0>
#> 
#> $`34`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d8b2e0>
#> 
#> $`35`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d8d200>
#> 
#> $`36`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04d91e78>
#> 
#> $`37`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e044a8>
#> 
#> $`38`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e78630>
#> 
#> $`39`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e7d858>
#> 
#> $`40`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e7f510>
#> 
#> $`41`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e81238>
#> 
#> $`42`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e87fc8>
#> 
#> $`43`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e89a50>
#> 
#> $`44`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e8b9e0>
#> 
#> $`45`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e8d970>
#> 
#> $`46`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e8f890>
#> 
#> $`47`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e91820>
#> 
#> $`48`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e93740>
#> 
#> $`49`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04e975f0>
#> 
#> $`50`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f09e40>
#> 
#> $`51`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f0bdd0>
#> 
#> $`52`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f0fd60>
#> 
#> $`53`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f11cb8>
#> 
#> $`54`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f13c48>
#> 
#> $`55`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f159e0>
#> 
#> $`56`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f17970>
#> 
#> $`57`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f198c8>
#> 
#> $`58`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f1b858>
#> 
#> $`59`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f1f7e8>
#> 
#> $`60`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f21778>
#> 
#> $`61`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f235f0>
#> 
#> $`62`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f27510>
#> 
#> $`63`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f29468>
#> 
#> $`64`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f2b3f8>
#> 
#> $`65`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f2d190>
#> 
#> $`66`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f2f0b0>
#> 
#> $`67`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f32fd0>
#> 
#> $`68`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f34e48>
#> 
#> $`69`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f36d30>
#> 
#> $`70`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f38c18>
#> 
#> $`71`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f3ab38>
#> 
#> $`72`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f3ef28>
#> 
#> $`73`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f40e48>
#> 
#> $`74`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f42d30>
#> 
#> $`75`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f44c88>
#> 
#> $`76`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f48b70>
#> 
#> $`77`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f4aac8>
#> 
#> $`78`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f4c978>
#> 
#> $`79`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f4e898>
#> 
#> $`80`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f507b8>
#> 
#> $`81`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f52710>
#> 
#> $`82`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f57f58>
#> 
#> $`83`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f59dd0>
#> 
#> $`84`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f5ba50>
#> 
#> $`85`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f5d938>
#> 
#> $`86`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f5f078>
#> 
#> $`87`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f60f98>
#> 
#> $`88`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f64ef0>
#> 
#> $`89`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f66e10>
#> 
#> $`90`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f68d68>
#> 
#> $`91`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f6ac88>
#> 
#> $`92`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f6cbe0>
#> 
#> $`93`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f6eb00>
#> 
#> $`94`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f75ac0>
#> 
#> $`95`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f7b900>
#> 
#> $`96`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f7d858>
#> 
#> $`97`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f7f708>
#> 
#> $`98`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f81430>
#> 
#> $`99`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f85350>
#> 
#> $`100`
#> function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#> <environment: 0x7fea04f87270>
#> 
#> 
#> Slot ".GFUN":
#> function (theta) 
#> {
#>     psii <- lapply(psi_list, function(psi) {
#>         do.call(psi, args = append(list(theta = theta), object@.inner_args))
#>     })
#>     compute_sum_of_list(psii, object@.weights)
#> }
#> <environment: 0x7fea04faf858>
#> 
#> Slot ".control":
#> An object of class "geex_control"
#> Slot ".approx":
#> An object of class "approx_control"
#> Slot ".FUN":
#> function () 
#> NULL
#> <bytecode: 0x7fea4759ffd0>
#> 
#> Slot ".options":
#> list()
#> 
#> 
#> Slot ".root":
#> An object of class "root_control"
#> Slot ".object_name":
#> [1] "root"
#> 
#> Slot ".FUN":
#> function (f, start, maxiter = 100, rtol = 1e-06, atol = 1e-08, 
#>     ctol = 1e-08, useFortran = TRUE, positive = FALSE, jacfunc = NULL, 
#>     jactype = "fullint", verbose = FALSE, bandup = 1, banddown = 1, 
#>     parms = NULL, ...) 
#> {
#>     initfunc <- NULL
#>     if (is.list(f)) {
#>         if (!is.null(jacfunc) & "jacfunc" %in% names(f)) 
#>             stop("If 'f' is a list that contains jacfunc, argument 'jacfunc' should be NULL")
#>         jacfunc <- f$jacfunc
#>         initfunc <- f$initfunc
#>         f <- f$func
#>     }
#>     N <- length(start)
#>     if (!is.numeric(start)) 
#>         stop("start conditions should be numeric")
#>     if (!is.numeric(maxiter)) 
#>         stop("`maxiter' must be numeric")
#>     if (as.integer(maxiter) < 1) 
#>         stop("maxiter must be >=1")
#>     if (!is.numeric(rtol)) 
#>         stop("`rtol' must be numeric")
#>     if (!is.numeric(atol)) 
#>         stop("`atol' must be numeric")
#>     if (!is.numeric(ctol)) 
#>         stop("`ctol' must be numeric")
#>     if (length(atol) > 1 && length(atol) != N) 
#>         stop("`atol' must either be a scalar, or as long as `start'")
#>     if (length(rtol) > 1 && length(rtol) != N) 
#>         stop("`rtol' must either be a scalar, or as long as `y'")
#>     if (length(ctol) > 1) 
#>         stop("`ctol' must be a scalar")
#>     if (useFortran) {
#>         if (!is.compiled(f) & is.null(parms)) {
#>             Fun1 <- function(time = 0, x, parms = NULL) list(f(x, 
#>                 ...))
#>             Fun <- Fun1
#>         }
#>         else if (!is.compiled(f)) {
#>             Fun2 <- function(time = 0, x, parms) list(f(x, parms, 
#>                 ...))
#>             Fun <- Fun2
#>         }
#>         else {
#>             Fun <- f
#>             f <- function(x, ...) Fun(n = length(start), t = 0, 
#>                 x, f = rep(0, length(start)), 1, 1)$f
#>         }
#>         JacFunc <- jacfunc
#>         if (!is.null(jacfunc)) 
#>             if (!is.compiled(JacFunc) & is.null(parms)) 
#>                 JacFunc <- function(time = 0, x, parms = parms) jacfunc(x, 
#>                   ...)
#>             else if (!is.compiled(JacFunc)) 
#>                 JacFunc <- function(time = 0, x, parms = parms) jacfunc(x, 
#>                   parms, ...)
#>             else JacFunc <- jacfunc
#>         method <- "stode"
#>         if (jactype == "sparse") {
#>             method <- "stodes"
#>             if (!is.null(jacfunc)) 
#>                 stop("jacfunc can not be used when jactype='sparse'")
#>             x <- stodes(y = start, time = 0, func = Fun, atol = atol, 
#>                 positive = positive, rtol = rtol, ctol = ctol, 
#>                 maxiter = maxiter, verbose = verbose, parms = parms, 
#>                 initfunc = initfunc)
#>         }
#>         else x <- steady(y = start, time = 0, func = Fun, atol = atol, 
#>             positive = positive, rtol = rtol, ctol = ctol, maxiter = maxiter, 
#>             method = method, jacfunc = JacFunc, jactype = jactype, 
#>             verbose = verbose, parms = parms, initfunc = initfunc, 
#>             bandup = bandup, banddown = banddown)
#>         precis <- attr(x, "precis")
#>         attributes(x) <- NULL
#>         x <- unlist(x)
#>         if (is.null(parms)) 
#>             reffx <- f(x, ...)
#>         else reffx <- f(x, parms, ...)
#>         i <- length(precis)
#>     }
#>     else {
#>         if (is.compiled(f)) 
#>             stop("cannot combine compiled code with R-implemented solver")
#>         precis <- NULL
#>         x <- start
#>         jacob <- matrix(nrow = N, ncol = N, data = 0)
#>         if (is.null(parms)) 
#>             reffx <- f(x, ...)
#>         else reffx <- f(x, parms, ...)
#>         if (length(reffx) != N) 
#>             stop("'f', function must return as many function values as elements in start")
#>         for (i in 1:maxiter) {
#>             refx <- x
#>             pp <- mean(abs(reffx))
#>             precis <- c(precis, pp)
#>             ewt <- rtol * abs(x) + atol
#>             if (max(abs(reffx/ewt)) < 1) 
#>                 break
#>             delt <- perturb(x)
#>             for (j in 1:N) {
#>                 x[j] <- x[j] + delt[j]
#>                 if (is.null(parms)) 
#>                   fx <- f(x, ...)
#>                 else fx <- f(x, parms, ...)
#>                 jacob[, j] <- (fx - reffx)/delt[j]
#>                 x[j] <- refx[j]
#>             }
#>             relchange <- as.numeric(solve(jacob, -1 * reffx))
#>             if (max(abs(relchange)) < ctol) 
#>                 break
#>             x <- x + relchange
#>             if (is.null(parms)) 
#>                 reffx <- f(x, ...)
#>             else reffx <- f(x, parms, ...)
#>         }
#>     }
#>     names(x) <- names(start)
#>     return(list(root = x, f.root = reffx, iter = i, estim.precis = precis[length(precis)]))
#> }
#> <bytecode: 0x7fea475c8ef8>
#> <environment: namespace:rootSolve>
#> 
#> Slot ".options":
#> $start
#> [1] 0 0 0
#> 
#> 
#> 
#> Slot ".deriv":
#> An object of class "deriv_control"
#> Slot ".FUN":
#> function (func, x, method = "Richardson", side = NULL, method.args = list(), 
#>     ...) 
#> UseMethod("jacobian")
#> <bytecode: 0x7fea475bf7f0>
#> <environment: namespace:numDeriv>
#> 
#> Slot ".options":
#> $method
#> [1] "Richardson"
#> 
#> 
#> 
#> 
#> Slot ".estFUN":
#> function(data){
#>  X <- cbind(1, data$X1, data$X2)
#>  Y <- data$Y4
#>  function(theta){
#>     t(X) %*% (Y - X %*% theta)
#>    }
#>  }
#> <environment: 0x7fea467e2df8>
#> 
#> Slot ".outer_args":
#> list()
#> 
#> Slot ".inner_args":
#> list()
#> 
#> 
#> Slot "rootFUN_results":
#> $root
#> [1] -0.04061272  0.14435320  0.35436823
#> 
#> $f.root
#>              [,1]
#> [1,] 4.174439e-14
#> [2,] 8.970602e-14
#> [3,] 2.575717e-14
#> 
#> $iter
#> [1] 3
#> 
#> $estim.precis
#> [1] 5.240253e-14
#> 
#> 
#> Slot "sandwich_components":
#> An object of class "sandwich_components"
#> Slot ".A":
#>         [,1]      [,2]     [,3]
#> [1,] 100.000  487.7690  50.0000
#> [2,] 487.769 2902.9210 237.3681
#> [3,]  50.000  237.3681  50.0000
#> 
#> Slot ".A_i":
#> $`1`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.949316    0
#> [2,] 4.949316 24.495730    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`2`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  7.851962    0
#> [2,] 7.851962 61.653306    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`3`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.729075    0
#> [2,] 4.729075 22.364149    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`4`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.564395    0
#> [2,] 2.564395 6.576123    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`5`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.782347    0
#> [2,] 4.782347 22.870844    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`6`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.335713    0
#> [2,] 5.335713 28.469832    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`7`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 1.386442    0
#> [2,] 1.386442 1.922222    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`8`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  3.453377    0
#> [2,] 3.453377 11.925814    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`9`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.958662    0
#> [2,] 2.958662 8.753678    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`10`
#>         [,1]     [,2] [,3]
#> [1,] 1.00000  7.59137    0
#> [2,] 7.59137 57.62889    0
#> [3,] 0.00000  0.00000    0
#> 
#> $`11`
#>         [,1]     [,2] [,3]
#> [1,] 1.00000  6.81294    0
#> [2,] 6.81294 46.41615    0
#> [3,] 0.00000  0.00000    0
#> 
#> $`12`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.481492    0
#> [2,] 2.481492 6.157802    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`13`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  3.307246    0
#> [2,] 3.307246 10.937874    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`14`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.366527    0
#> [2,] 2.366527 5.600449    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`15`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  6.308752    0
#> [2,] 6.308752 39.800348    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`16`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.280638    0
#> [2,] 2.280638 5.201311    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`17`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.872154    0
#> [2,] 2.872154 8.249268    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`18`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.361465    0
#> [2,] 4.361465 19.022379    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`19`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  3.573053    0
#> [2,] 3.573053 12.766708    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`20`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.556376    0
#> [2,] 5.556376 30.873320    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`21`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  7.752991    0
#> [2,] 7.752991 60.108874    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`22`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  6.030068    0
#> [2,] 6.030068 36.361715    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`23`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.213262    0
#> [2,] 4.213262 17.751575    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`24`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.923132    0
#> [2,] 2.923132 8.544699    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`25`
#>         [,1]     [,2] [,3]
#> [1,] 1.00000  5.15683    0
#> [2,] 5.15683 26.59289    0
#> [3,] 0.00000  0.00000    0
#> 
#> $`26`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.519839    0
#> [2,] 5.519839 30.468624    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`27`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.477283    0
#> [2,] 5.477283 30.000628    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`28`
#>         [,1]     [,2] [,3]
#> [1,] 1.00000  4.05543    0
#> [2,] 4.05543 16.44651    0
#> [3,] 0.00000  0.00000    0
#> 
#> $`29`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.319714    0
#> [2,] 4.319714 18.659927    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`30`
#>          [,1]      [,2] [,3]
#> [1,]  1.00000  10.28389    0
#> [2,] 10.28389 105.75848    0
#> [3,]  0.00000   0.00000    0
#> 
#> $`31`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.557841    0
#> [2,] 2.557841 6.542550    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`32`
#>          [,1]      [,2] [,3]
#> [1,]  1.00000  11.15274    0
#> [2,] 11.15274 124.38366    0
#> [3,]  0.00000   0.00000    0
#> 
#> $`33`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.538047    0
#> [2,] 2.538047 6.441684    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`34`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  7.939765    0
#> [2,] 7.939765 63.039867    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`35`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  3.629295    0
#> [2,] 3.629295 13.171780    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`36`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.644317    0
#> [2,] 5.644317 31.858312    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`37`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 1.385403    0
#> [2,] 1.385403 1.919341    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`38`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  3.651563    0
#> [2,] 3.651563 13.333910    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`39`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.075987    0
#> [2,] 2.075987 4.309721    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`40`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  7.947636    0
#> [2,] 7.947636 63.164914    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`41`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  3.893624    0
#> [2,] 3.893624 15.160307    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`42`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.399113    0
#> [2,] 4.399113 19.352196    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`43`
#>          [,1]     [,2] [,3]
#> [1,] 1.000000 2.019187    0
#> [2,] 2.019187 4.077114    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`44`
#>          [,1]      [,2] [,3]
#> [1,]  1.00000  10.18205    0
#> [2,] 10.18205 103.67407    0
#> [3,]  0.00000   0.00000    0
#> 
#> $`45`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  4.471305    0
#> [2,] 4.471305 19.992570    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`46`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.445723    0
#> [2,] 5.445723 29.655894    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`47`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  5.030453    0
#> [2,] 5.030453 25.305462    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`48`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  7.586987    0
#> [2,] 7.586987 57.562365    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`49`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  9.452187    0
#> [2,] 9.452187 89.343839    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`50`
#>          [,1]      [,2] [,3]
#> [1,] 1.000000  8.141977    0
#> [2,] 8.141977 66.291783    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`51`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.623052 1.000000
#> [2,] 5.623052 31.618709 5.623052
#> [3,] 1.000000  5.623052 1.000000
#> 
#> $`52`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.066275 1.000000
#> [2,] 5.066275 25.667144 5.066275
#> [3,] 1.000000  5.066275 1.000000
#> 
#> $`53`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 2.174904 1.000000
#> [2,] 2.174904 4.730206 2.174904
#> [3,] 1.000000 2.174904 1.000000
#> 
#> $`54`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 1.373871 1.000000
#> [2,] 1.373871 1.887521 1.373871
#> [3,] 1.000000 1.373871 1.000000
#> 
#> $`55`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.252394 1.000000
#> [2,] 4.252394 18.082857 4.252394
#> [3,] 1.000000  4.252394 1.000000
#> 
#> $`56`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 1.844766 1.000000
#> [2,] 1.844766 3.403163 1.844766
#> [3,] 1.000000 1.844766 1.000000
#> 
#> $`57`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  6.257311 1.000000
#> [2,] 6.257311 39.153943 6.257311
#> [3,] 1.000000  6.257311 1.000000
#> 
#> $`58`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  7.640542 1.000000
#> [2,] 7.640542 58.377883 7.640542
#> [3,] 1.000000  7.640542 1.000000
#> 
#> $`59`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.400547 1.000000
#> [2,] 3.400547 11.563718 3.400547
#> [3,] 1.000000  3.400547 1.000000
#> 
#> $`60`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.879217 1.000000
#> [2,] 3.879217 15.048328 3.879217
#> [3,] 1.000000  3.879217 1.000000
#> 
#> $`61`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.044494 1.000000
#> [2,] 5.044494 25.446924 5.044494
#> [3,] 1.000000  5.044494 1.000000
#> 
#> $`62`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.724228 1.000000
#> [2,] 3.724228 13.869875 3.724228
#> [3,] 1.000000  3.724228 1.000000
#> 
#> $`63`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.209739 1.000000
#> [2,] 3.209739 10.302421 3.209739
#> [3,] 1.000000  3.209739 1.000000
#> 
#> $`64`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.503141 1.000000
#> [2,] 3.503141 12.271994 3.503141
#> [3,] 1.000000  3.503141 1.000000
#> 
#> $`65`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.588984 1.000000
#> [2,] 3.588984 12.880809 3.588984
#> [3,] 1.000000  3.588984 1.000000
#> 
#> $`66`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 2.572586 1.000000
#> [2,] 2.572586 6.618198 2.572586
#> [3,] 1.000000 2.572586 1.000000
#> 
#> $`67`
#>         [,1]     [,2]    [,3]
#> [1,] 1.00000 2.321320 1.00000
#> [2,] 2.32132 5.388528 2.32132
#> [3,] 1.00000 2.321320 1.00000
#> 
#> $`68`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  7.354859 1.000000
#> [2,] 7.354859 54.093946 7.354859
#> [3,] 1.000000  7.354859 1.000000
#> 
#> $`69`
#>         [,1]     [,2]    [,3]
#> [1,] 1.00000 1.780620 1.00000
#> [2,] 1.78062 3.170606 1.78062
#> [3,] 1.00000 1.780620 1.00000
#> 
#> $`70`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 2.438272 1.000000
#> [2,] 2.438272 5.945173 2.438272
#> [3,] 1.000000 2.438272 1.000000
#> 
#> $`71`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.870025 1.000000
#> [2,] 4.870025 23.717145 4.870025
#> [3,] 1.000000  4.870025 1.000000
#> 
#> $`72`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  6.107551 1.000000
#> [2,] 6.107551 37.302178 6.107551
#> [3,] 1.000000  6.107551 1.000000
#> 
#> $`73`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 3.068762 1.000000
#> [2,] 3.068762 9.417303 3.068762
#> [3,] 1.000000 3.068762 1.000000
#> 
#> $`74`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  8.069649 1.000000
#> [2,] 8.069649 65.119232 8.069649
#> [3,] 1.000000  8.069649 1.000000
#> 
#> $`75`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 2.564135 1.000000
#> [2,] 2.564135 6.574787 2.564135
#> [3,] 1.000000 2.564135 1.000000
#> 
#> $`76`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  6.700594 1.000000
#> [2,] 6.700594 44.897963 6.700594
#> [3,] 1.000000  6.700594 1.000000
#> 
#> $`77`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.381833 1.000000
#> [2,] 5.381833 28.964128 5.381833
#> [3,] 1.000000  5.381833 1.000000
#> 
#> $`78`
#>         [,1]     [,2]    [,3]
#> [1,]  1.0000  12.6449  1.0000
#> [2,] 12.6449 159.8935 12.6449
#> [3,]  1.0000  12.6449  1.0000
#> 
#> $`79`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 2.037142 1.000000
#> [2,] 2.037142 4.149947 2.037142
#> [3,] 1.000000 2.037142 1.000000
#> 
#> $`80`
#>         [,1]     [,2]    [,3]
#> [1,] 1.00000  5.88364 1.00000
#> [2,] 5.88364 34.61722 5.88364
#> [3,] 1.00000  5.88364 1.00000
#> 
#> $`81`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  7.093428 1.000000
#> [2,] 7.093428 50.316720 7.093428
#> [3,] 1.000000  7.093428 1.000000
#> 
#> $`82`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.873831 1.000000
#> [2,] 4.873831 23.754232 4.873831
#> [3,] 1.000000  4.873831 1.000000
#> 
#> $`83`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  8.291038 1.000000
#> [2,] 8.291038 68.741319 8.291038
#> [3,] 1.000000  8.291038 1.000000
#> 
#> $`84`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.051026 1.000000
#> [2,] 4.051026 16.410813 4.051026
#> [3,] 1.000000  4.051026 1.000000
#> 
#> $`85`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  7.689539 1.000000
#> [2,] 7.689539 59.129016 7.689539
#> [3,] 1.000000  7.689539 1.000000
#> 
#> $`86`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.933636 1.000000
#> [2,] 4.933636 24.340769 4.933636
#> [3,] 1.000000  4.933636 1.000000
#> 
#> $`87`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.774989 1.000000
#> [2,] 5.774989 33.350494 5.774989
#> [3,] 1.000000  5.774989 1.000000
#> 
#> $`88`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.483566 1.000000
#> [2,] 4.483566 20.102364 4.483566
#> [3,] 1.000000  4.483566 1.000000
#> 
#> $`89`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 2.739769 1.000000
#> [2,] 2.739769 7.506334 2.739769
#> [3,] 1.000000 2.739769 1.000000
#> 
#> $`90`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.286464 1.000000
#> [2,] 5.286464 27.946699 5.286464
#> [3,] 1.000000  5.286464 1.000000
#> 
#> $`91`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.701213 1.000000
#> [2,] 3.701213 13.698980 3.701213
#> [3,] 1.000000  3.701213 1.000000
#> 
#> $`92`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.795986 1.000000
#> [2,] 5.795986 33.593451 5.795986
#> [3,] 1.000000  5.795986 1.000000
#> 
#> $`93`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.883292 1.000000
#> [2,] 4.883292 23.846542 4.883292
#> [3,] 1.000000  4.883292 1.000000
#> 
#> $`94`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  7.172253 1.000000
#> [2,] 7.172253 51.441211 7.172253
#> [3,] 1.000000  7.172253 1.000000
#> 
#> $`95`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.340735 1.000000
#> [2,] 3.340735 11.160513 3.340735
#> [3,] 1.000000  3.340735 1.000000
#> 
#> $`96`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  7.262549 1.000000
#> [2,] 7.262549 52.744614 7.262549
#> [3,] 1.000000  7.262549 1.000000
#> 
#> $`97`
#>          [,1]     [,2]     [,3]
#> [1,] 1.000000 1.940701 1.000000
#> [2,] 1.940701 3.766322 1.940701
#> [3,] 1.000000 1.940701 1.000000
#> 
#> $`98`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  5.958475 1.000000
#> [2,] 5.958475 35.503422 5.958475
#> [3,] 1.000000  5.958475 1.000000
#> 
#> $`99`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  4.432708 1.000000
#> [2,] 4.432708 19.648898 4.432708
#> [3,] 1.000000  4.432708 1.000000
#> 
#> $`100`
#>          [,1]      [,2]     [,3]
#> [1,] 1.000000  3.283518 1.000000
#> [2,] 3.283518 10.781492 3.283518
#> [3,] 1.000000  3.283518 1.000000
#> 
#> 
#> Slot ".B":
#>           [,1]      [,2]      [,3]
#> [1,] 101.49842  498.0078  69.60688
#> [2,] 498.00784 2943.3859 325.89676
#> [3,]  69.60688  325.8968  69.60688
#> 
#> Slot ".B_i":
#> $`1`
#>           [,1]     [,2] [,3]
#> [1,] 0.3376745 1.671258    0
#> [2,] 1.6712577 8.271583    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`2`
#>             [,1]      [,2] [,3]
#> [1,] 0.005793609 0.0454912    0
#> [2,] 0.045491199 0.3571952    0
#> [3,] 0.000000000 0.0000000    0
#> 
#> $`3`
#>            [,1]      [,2] [,3]
#> [1,] 0.02191998 0.1036612    0
#> [2,] 0.10366122 0.4902217    0
#> [3,] 0.00000000 0.0000000    0
#> 
#> $`4`
#>           [,1]     [,2] [,3]
#> [1,] 0.8347717 2.140684    0
#> [2,] 2.1406844 5.489561    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`5`
#>             [,1]        [,2] [,3]
#> [1,] 0.002067665 0.009888292    0
#> [2,] 0.009888292 0.047289245    0
#> [3,] 0.000000000 0.000000000    0
#> 
#> $`6`
#>            [,1]      [,2] [,3]
#> [1,] 0.04954491 0.2643574    0
#> [2,] 0.26435742 1.4105353    0
#> [3,] 0.00000000 0.0000000    0
#> 
#> $`7`
#>           [,1]      [,2] [,3]
#> [1,] 0.2526782 0.3503238    0
#> [2,] 0.3503238 0.4857037    0
#> [3,] 0.0000000 0.0000000    0
#> 
#> $`8`
#>           [,1]     [,2] [,3]
#> [1,] 0.4927719 1.701727    0
#> [2,] 1.7017270 5.876705    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`9`
#>           [,1]     [,2] [,3]
#> [1,] 0.6656484 1.969428    0
#> [2,] 1.9694284 5.826872    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`10`
#>           [,1]      [,2] [,3]
#> [1,] 0.3090815  2.346352    0
#> [2,] 2.3463516 17.812022    0
#> [3,] 0.0000000  0.000000    0
#> 
#> $`11`
#>             [,1]       [,2] [,3]
#> [1,] 0.005137569 0.03500195    0
#> [2,] 0.035001949 0.23846618    0
#> [3,] 0.000000000 0.00000000    0
#> 
#> $`12`
#>           [,1]       [,2] [,3]
#> [1,] 0.0160846 0.03991380    0
#> [2,] 0.0399138 0.09904578    0
#> [3,] 0.0000000 0.00000000    0
#> 
#> $`13`
#>            [,1]      [,2] [,3]
#> [1,] 0.04314268 0.1426834    0
#> [2,] 0.14268345 0.4718892    0
#> [3,] 0.00000000 0.0000000    0
#> 
#> $`14`
#>          [,1]     [,2] [,3]
#> [1,] 0.601385 1.423194    0
#> [2,] 1.423194 3.368026    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`15`
#>              [,1]        [,2] [,3]
#> [1,] 0.0002503076 0.001579129    0
#> [2,] 0.0015791286 0.009962330    0
#> [3,] 0.0000000000 0.000000000    0
#> 
#> $`16`
#>              [,1]         [,2] [,3]
#> [1,] 0.0001028684 0.0002346056    0
#> [2,] 0.0002346056 0.0005350506    0
#> [3,] 0.0000000000 0.0000000000    0
#> 
#> $`17`
#>           [,1]      [,2] [,3]
#> [1,] 0.1410985 0.4052565    0
#> [2,] 0.4052565 1.1639589    0
#> [3,] 0.0000000 0.0000000    0
#> 
#> $`18`
#>           [,1]      [,2] [,3]
#> [1,] 0.2097860 0.9149744    0
#> [2,] 0.9149744 3.9906291    0
#> [3,] 0.0000000 0.0000000    0
#> 
#> $`19`
#>           [,1]      [,2] [,3]
#> [1,] 0.8680235  3.101494    0
#> [2,] 3.1014942 11.081803    0
#> [3,] 0.0000000  0.000000    0
#> 
#> $`20`
#>           [,1]      [,2] [,3]
#> [1,]  4.859672  27.00217    0
#> [2,] 27.002169 150.03422    0
#> [3,]  0.000000   0.00000    0
#> 
#> $`21`
#>           [,1]      [,2] [,3]
#> [1,] 0.4113263  3.189009    0
#> [2,] 3.1890091 24.724360    0
#> [3,] 0.0000000  0.000000    0
#> 
#> $`22`
#>          [,1]      [,2] [,3]
#> [1,] 0.406050  2.448509    0
#> [2,] 2.448509 14.764675    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`23`
#>            [,1]      [,2] [,3]
#> [1,] 0.04652751 0.1960326    0
#> [2,] 0.19603258 0.8259366    0
#> [3,] 0.00000000 0.0000000    0
#> 
#> $`24`
#>           [,1]     [,2] [,3]
#> [1,] 0.6152317 1.798403    0
#> [2,] 1.7984033 5.256969    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`25`
#>           [,1]      [,2] [,3]
#> [1,] 0.8144851  4.200161    0
#> [2,] 4.2001611 21.659516    0
#> [3,] 0.0000000  0.000000    0
#> 
#> $`26`
#>           [,1]     [,2] [,3]
#> [1,] 0.2944803 1.625484    0
#> [2,] 1.6254838 8.972409    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`27`
#>           [,1]      [,2] [,3]
#> [1,] 0.6765784  3.705811    0
#> [2,] 3.7058113 20.297777    0
#> [3,] 0.0000000  0.000000    0
#> 
#> $`28`
#>            [,1]      [,2] [,3]
#> [1,] 0.03674351 0.1490107    0
#> [2,] 0.14901071 0.6043025    0
#> [3,] 0.00000000 0.0000000    0
#> 
#> $`29`
#>          [,1]      [,2] [,3]
#> [1,] 1.460980  6.311013    0
#> [2,] 6.311013 27.261771    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`30`
#>             [,1]       [,2] [,3]
#> [1,] 0.004683337 0.04816295    0
#> [2,] 0.048162946 0.49530264    0
#> [3,] 0.000000000 0.00000000    0
#> 
#> $`31`
#>            [,1]       [,2] [,3]
#> [1,] 0.00408951 0.01046032    0
#> [2,] 0.01046032 0.02675582    0
#> [3,] 0.00000000 0.00000000    0
#> 
#> $`32`
#>           [,1]      [,2] [,3]
#> [1,]  1.969331  21.96344    0
#> [2,] 21.963440 244.95259    0
#> [3,]  0.000000   0.00000    0
#> 
#> $`33`
#>            [,1]       [,2] [,3]
#> [1,] 0.01207524 0.03064754    0
#> [2,] 0.03064754 0.07778491    0
#> [3,] 0.00000000 0.00000000    0
#> 
#> $`34`
#>           [,1]      [,2] [,3]
#> [1,] 0.1041577 0.8269879    0
#> [2,] 0.8269879 6.5660893    0
#> [3,] 0.0000000 0.0000000    0
#> 
#> $`35`
#>          [,1]     [,2] [,3]
#> [1,] 0.504629 1.831447    0
#> [2,] 1.831447 6.646862    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`36`
#>           [,1]      [,2] [,3]
#> [1,] 0.1099088 0.6203603    0
#> [2,] 0.6203603 3.5015103    0
#> [3,] 0.0000000 0.0000000    0
#> 
#> $`37`
#>            [,1]       [,2] [,3]
#> [1,] 0.06868244 0.09515285    0
#> [2,] 0.09515285 0.13182503    0
#> [3,] 0.00000000 0.00000000    0
#> 
#> $`38`
#>           [,1]      [,2] [,3]
#> [1,] 0.1567982 0.5725584    0
#> [2,] 0.5725584 2.0907330    0
#> [3,] 0.0000000 0.0000000    0
#> 
#> $`39`
#>          [,1]     [,2] [,3]
#> [1,] 1.240859 2.576006    0
#> [2,] 2.576006 5.347755    0
#> [3,] 0.000000 0.000000    0
#> 
#> $`40`
#>           [,1]      [,2] [,3]
#> [1,] 0.5750366  4.570181    0
#> [2,] 4.5701811 36.322135    0
#> [3,] 0.0000000  0.000000    0
#> 
#> $`41`
#>            [,1]       [,2] [,3]
#> [1,] 0.01787868 0.06961287    0
#> [2,] 0.06961287 0.27104634    0
#> [3,] 0.00000000 0.00000000    0
#> 
#> $`42`
#>          [,1]      [,2] [,3]
#> [1,] 1.818996  8.001968    0
#> [2,] 8.001968 35.201560    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`43`
#>          [,1]      [,2] [,3]
#> [1,] 2.978111  6.013361    0
#> [2,] 6.013361 12.142097    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`44`
#>            [,1]       [,2] [,3]
#> [1,] 0.09726523  0.9903592    0
#> [2,] 0.99035916 10.0838831    0
#> [3,] 0.00000000  0.0000000    0
#> 
#> $`45`
#>           [,1]     [,2] [,3]
#> [1,] 0.3363853 1.504081    0
#> [2,] 1.5040813 6.725207    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`46`
#>          [,1]      [,2] [,3]
#> [1,] 1.491594  8.122809    0
#> [2,] 8.122809 44.234564    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`47`
#>           [,1]     [,2] [,3]
#> [1,] 0.1988663 1.000388    0
#> [2,] 1.0003879 5.032405    0
#> [3,] 0.0000000 0.000000    0
#> 
#> $`48`
#>          [,1]      [,2] [,3]
#> [1,] 1.261514  9.571088    0
#> [2,] 9.571088 72.615719    0
#> [3,] 0.000000  0.000000    0
#> 
#> $`49`
#>            [,1]      [,2] [,3]
#> [1,] 0.05515122 0.5212996    0
#> [2,] 0.52129963 4.9274216    0
#> [3,] 0.00000000 0.0000000    0
#> 
#> $`50`
#>           [,1]     [,2] [,3]
#> [1,]  4.406497  35.8776    0
#> [2,] 35.877599 292.1146    0
#> [3,]  0.000000   0.0000    0
#> 
#> $`51`
#>           [,1]      [,2]      [,3]
#> [1,] 0.1682788 0.9462405 0.1682788
#> [2,] 0.9462405 5.3207592 0.9462405
#> [3,] 0.1682788 0.9462405 0.1682788
#> 
#> $`52`
#>           [,1]     [,2]      [,3]
#> [1,]  2.812527 14.24903  2.812527
#> [2,] 14.249035 72.18953 14.249035
#> [3,]  2.812527 14.24903  2.812527
#> 
#> $`53`
#>           [,1]      [,2]      [,3]
#> [1,] 0.1358994 0.2955682 0.1358994
#> [2,] 0.2955682 0.6428323 0.2955682
#> [3,] 0.1358994 0.2955682 0.1358994
#> 
#> $`54`
#>          [,1]     [,2]     [,3]
#> [1,] 4.506172 6.190898 4.506172
#> [2,] 6.190898 8.505494 6.190898
#> [3,] 4.506172 6.190898 4.506172
#> 
#> $`55`
#>          [,1]     [,2]     [,3]
#> [1,]  4.72753 20.10332  4.72753
#> [2,] 20.10332 85.48724 20.10332
#> [3,]  4.72753 20.10332  4.72753
#> 
#> $`56`
#>          [,1]     [,2]     [,3]
#> [1,] 1.403958 2.589974 1.403958
#> [2,] 2.589974 4.777898 2.589974
#> [3,] 1.403958 2.589974 1.403958
#> 
#> $`57`
#>           [,1]     [,2]      [,3]
#> [1,]  1.932414 12.09172  1.932414
#> [2,] 12.091715 75.66162 12.091715
#> [3,]  1.932414 12.09172  1.932414
#> 
#> $`58`
#>           [,1]      [,2]      [,3]
#> [1,]  3.140815  23.99753  3.140815
#> [2,] 23.997528 183.35412 23.997528
#> [3,]  3.140815  23.99753  3.140815
#> 
#> $`59`
#>          [,1]      [,2]     [,3]
#> [1,] 2.300434  7.822733 2.300434
#> [2,] 7.822733 26.601568 7.822733
#> [3,] 2.300434  7.822733 2.300434
#> 
#> $`60`
#>           [,1]     [,2]      [,3]
#> [1,] 0.5251366 2.037119 0.5251366
#> [2,] 2.0371190 7.902427 2.0371190
#> [3,] 0.5251366 2.037119 0.5251366
#> 
#> $`61`
#>            [,1]      [,2]       [,3]
#> [1,] 0.03979656 0.2007535 0.03979656
#> [2,] 0.20075354 1.0127001 0.20075354
#> [3,] 0.03979656 0.2007535 0.03979656
#> 
#> $`62`
#>             [,1]       [,2]        [,3]
#> [1,] 0.002726827 0.01015533 0.002726827
#> [2,] 0.010155326 0.03782075 0.010155326
#> [3,] 0.002726827 0.01015533 0.002726827
#> 
#> $`63`
#>            [,1]      [,2]       [,3]
#> [1,] 0.05522558 0.1772597 0.05522558
#> [2,] 0.17725968 0.5689572 0.17725968
#> [3,] 0.05522558 0.1772597 0.05522558
#> 
#> $`64`
#>           [,1]     [,2]      [,3]
#> [1,]  7.359435 25.78114  7.359435
#> [2,] 25.781136 90.31494 25.781136
#> [3,]  7.359435 25.78114  7.359435
#> 
#> $`65`
#>            [,1]      [,2]       [,3]
#> [1,] 0.06599539 0.2368564 0.06599539
#> [2,] 0.23685644 0.8500741 0.23685644
#> [3,] 0.06599539 0.2368564 0.06599539
#> 
#> $`66`
#>           [,1]      [,2]      [,3]
#> [1,] 0.2925543 0.7526211 0.2925543
#> [2,] 0.7526211 1.9361825 0.7526211
#> [3,] 0.2925543 0.7526211 0.2925543
#> 
#> $`67`
#>           [,1]     [,2]      [,3]
#> [1,] 0.6745021 1.565735 0.6745021
#> [2,] 1.5657353 3.634573 1.5657353
#> [3,] 0.6745021 1.565735 0.6745021
#> 
#> $`68`
#>            [,1]      [,2]       [,3]
#> [1,] 0.02615483 0.1923651 0.02615483
#> [2,] 0.19236510 1.4148181 0.19236510
#> [3,] 0.02615483 0.1923651 0.02615483
#> 
#> $`69`
#>           [,1]       [,2]      [,3]
#> [1,] 0.0188654 0.03359210 0.0188654
#> [2,] 0.0335921 0.05981475 0.0335921
#> [3,] 0.0188654 0.03359210 0.0188654
#> 
#> $`70`
#>             [,1]       [,2]        [,3]
#> [1,] 0.007328974 0.01787004 0.007328974
#> [2,] 0.017870037 0.04357202 0.017870037
#> [3,] 0.007328974 0.01787004 0.007328974
#> 
#> $`71`
#>           [,1]     [,2]      [,3]
#> [1,] 0.2695132 1.312536 0.2695132
#> [2,] 1.3125358 6.392083 1.3125358
#> [3,] 0.2695132 1.312536 0.2695132
#> 
#> $`72`
#>          [,1]      [,2]     [,3]
#> [1,] 1.100402  6.720763 1.100402
#> [2,] 6.720763 41.047402 6.720763
#> [3,] 1.100402  6.720763 1.100402
#> 
#> $`73`
#>          [,1]     [,2]     [,3]
#> [1,] 1.024719 3.144621 1.024719
#> [2,] 3.144621 9.650093 3.144621
#> [3,] 1.024719 3.144621 1.024719
#> 
#> $`74`
#>           [,1]      [,2]      [,3]
#> [1,]  2.486461  20.06486  2.486461
#> [2,] 20.064864 161.91640 20.064864
#> [3,]  2.486461  20.06486  2.486461
#> 
#> $`75`
#>          [,1]      [,2]     [,3]
#> [1,] 3.570509  9.155267 3.570509
#> [2,] 9.155267 23.475337 9.155267
#> [3,] 3.570509  9.155267 3.570509
#> 
#> $`76`
#>              [,1]         [,2]         [,3]
#> [1,] 3.245084e-06 2.174399e-05 3.245084e-06
#> [2,] 2.174399e-05 1.456977e-04 2.174399e-05
#> [3,] 3.245084e-06 2.174399e-05 3.245084e-06
#> 
#> $`77`
#>          [,1]      [,2]     [,3]
#> [1,] 1.081570  5.820827 1.081570
#> [2,] 5.820827 31.326720 5.820827
#> [3,] 1.081570  5.820827 1.081570
#> 
#> $`78`
#>              [,1]         [,2]         [,3]
#> [1,] 1.646536e-05 0.0002082028 1.646536e-05
#> [2,] 2.082028e-04 0.0026327036 2.082028e-04
#> [3,] 1.646536e-05 0.0002082028 1.646536e-05
#> 
#> $`79`
#>          [,1]     [,2]     [,3]
#> [1,] 1.450441 2.954754 1.450441
#> [2,] 2.954754 6.019254 2.954754
#> [3,] 1.450441 2.954754 1.450441
#> 
#> $`80`
#>           [,1]      [,2]      [,3]
#> [1,]  4.198887  24.70474  4.198887
#> [2,] 24.704738 145.35378 24.704738
#> [3,]  4.198887  24.70474  4.198887
#> 
#> $`81`
#>           [,1]      [,2]      [,3]
#> [1,] 0.7542063  5.349908 0.7542063
#> [2,] 5.3499082 37.949188 5.3499082
#> [3,] 0.7542063  5.349908 0.7542063
#> 
#> $`82`
#>              [,1]        [,2]         [,3]
#> [1,] 0.0004031544 0.001964907 0.0004031544
#> [2,] 0.0019649066 0.009576623 0.0019649066
#> [3,] 0.0004031544 0.001964907 0.0004031544
#> 
#> $`83`
#>           [,1]      [,2]      [,3]
#> [1,]  2.035869  16.87947  2.035869
#> [2,] 16.879471 139.94834 16.879471
#> [3,]  2.035869  16.87947  2.035869
#> 
#> $`84`
#>           [,1]     [,2]      [,3]
#> [1,]  3.329322 13.48717  3.329322
#> [2,] 13.487171 54.63688 13.487171
#> [3,]  3.329322 13.48717  3.329322
#> 
#> $`85`
#>           [,1]      [,2]      [,3]
#> [1,] 0.4287243  3.296692 0.4287243
#> [2,] 3.2966921 25.350044 3.2966921
#> [3,] 0.4287243  3.296692 0.4287243
#> 
#> $`86`
#>             [,1]       [,2]        [,3]
#> [1,] 0.008187193 0.04039263 0.008187193
#> [2,] 0.040392634 0.19928257 0.040392634
#> [3,] 0.008187193 0.04039263 0.008187193
#> 
#> $`87`
#>           [,1]      [,2]      [,3]
#> [1,] 0.0607490 0.3508248 0.0607490
#> [2,] 0.3508248 2.0260093 0.3508248
#> [3,] 0.0607490 0.3508248 0.0607490
#> 
#> $`88`
#>           [,1]      [,2]      [,3]
#> [1,] 0.8185654  3.670092 0.8185654
#> [2,] 3.6700922 16.455101 3.6700922
#> [3,] 0.8185654  3.670092 0.8185654
#> 
#> $`89`
#>          [,1]      [,2]     [,3]
#> [1,] 3.579296  9.806444 3.579296
#> [2,] 9.806444 26.867390 9.806444
#> [3,] 3.579296  9.806444 3.579296
#> 
#> $`90`
#>             [,1]       [,2]        [,3]
#> [1,] 0.002703729 0.01429316 0.002703729
#> [2,] 0.014293163 0.07556029 0.014293163
#> [3,] 0.002703729 0.01429316 0.002703729
#> 
#> $`91`
#>           [,1]      [,2]      [,3]
#> [1,] 0.1892585 0.7004859 0.1892585
#> [2,] 0.7004859 2.5926477 0.7004859
#> [3,] 0.1892585 0.7004859 0.1892585
#> 
#> $`92`
#>           [,1]     [,2]      [,3]
#> [1,]  2.124235 12.31203  2.124235
#> [2,] 12.312033 71.36037 12.312033
#> [3,]  2.124235 12.31203  2.124235
#> 
#> $`93`
#>           [,1]      [,2]      [,3]
#> [1,] 0.6778271  3.310028 0.6778271
#> [2,] 3.3100277 16.163832 3.3100277
#> [3,] 0.6778271  3.310028 0.6778271
#> 
#> $`94`
#>           [,1]     [,2]      [,3]
#> [1,]  1.414765 10.14706  1.414765
#> [2,] 10.147055 72.77725 10.147055
#> [3,]  1.414765 10.14706  1.414765
#> 
#> $`95`
#>           [,1]      [,2]      [,3]
#> [1,] 0.1538399 0.5139383 0.1538399
#> [2,] 0.5139383 1.7169320 0.5139383
#> [3,] 0.1538399 0.5139383 0.1538399
#> 
#> $`96`
#>           [,1]      [,2]      [,3]
#> [1,]  5.807184  42.17496  5.807184
#> [2,] 42.174957 306.29768 42.174957
#> [3,]  5.807184  42.17496  5.807184
#> 
#> $`97`
#>           [,1]      [,2]      [,3]
#> [1,] 0.3998382 0.7759666 0.3998382
#> [2,] 0.7759666 1.5059195 0.7759666
#> [3,] 0.3998382 0.7759666 0.3998382
#> 
#> $`98`
#>           [,1]     [,2]      [,3]
#> [1,] 0.1896488 1.130018 0.1896488
#> [2,] 1.1300179 6.733183 1.1300179
#> [3,] 0.1896488 1.130018 0.1896488
#> 
#> $`99`
#>          [,1]      [,2]     [,3]
#> [1,] 1.186016  5.257261 1.186016
#> [2,] 5.257261 23.303900 5.257261
#> [3,] 1.186016  5.257261 1.186016
#> 
#> $`100`
#>          [,1]      [,2]     [,3]
#> [1,] 1.067967  3.506689 1.067967
#> [2,] 3.506689 11.514276 3.506689
#> [3,] 1.067967  3.506689 1.067967
#> 
#> 
#> Slot ".ee_i":
#> $`1`
#>            [,1]
#> [1,] -0.5810976
#> [2,] -2.8760359
#> [3,]  0.0000000
#> 
#> $`2`
#>             [,1]
#> [1,] -0.07611576
#> [2,] -0.59765806
#> [3,]  0.00000000
#> 
#> $`3`
#>            [,1]
#> [1,] -0.1480540
#> [2,] -0.7001583
#> [3,]  0.0000000
#> 
#> $`4`
#>           [,1]
#> [1,] 0.9136584
#> [2,] 2.3429812
#> [3,] 0.0000000
#> 
#> $`5`
#>            [,1]
#> [1,] 0.04547158
#> [2,] 0.21746090
#> [3,] 0.00000000
#> 
#> $`6`
#>           [,1]
#> [1,] 0.2225869
#> [2,] 1.1876596
#> [3,] 0.0000000
#> 
#> $`7`
#>            [,1]
#> [1,] -0.5026711
#> [2,] -0.6969244
#> [3,]  0.0000000
#> 
#> $`8`
#>           [,1]
#> [1,] 0.7019771
#> [2,] 2.4241917
#> [3,] 0.0000000
#> 
#> $`9`
#>            [,1]
#> [1,] -0.8158728
#> [2,] -2.4138915
#> [3,]  0.0000000
#> 
#> $`10`
#>           [,1]
#> [1,] -0.555951
#> [2,] -4.220429
#> [3,]  0.000000
#> 
#> $`11`
#>             [,1]
#> [1,] -0.07167684
#> [2,] -0.48832999
#> [3,]  0.00000000
#> 
#> $`12`
#>           [,1]
#> [1,] 0.1268251
#> [2,] 0.3147154
#> [3,] 0.0000000
#> 
#> $`13`
#>            [,1]
#> [1,] -0.2077082
#> [2,] -0.6869419
#> [3,]  0.0000000
#> 
#> $`14`
#>           [,1]
#> [1,] 0.7754902
#> [2,] 1.8352182
#> [3,] 0.0000000
#> 
#> $`15`
#>             [,1]
#> [1,] -0.01582111
#> [2,] -0.09981147
#> [3,]  0.00000000
#> 
#> $`16`
#>            [,1]
#> [1,] 0.01014241
#> [2,] 0.02313116
#> [3,] 0.00000000
#> 
#> $`17`
#>            [,1]
#> [1,] -0.3756307
#> [2,] -1.0788693
#> [3,]  0.0000000
#> 
#> $`18`
#>          [,1]
#> [1,] 0.458024
#> [2,] 1.997656
#> [3,] 0.000000
#> 
#> $`19`
#>            [,1]
#> [1,] -0.9316778
#> [2,] -3.3289343
#> [3,]  0.0000000
#> 
#> $`20`
#>           [,1]
#> [1,]  2.204466
#> [2,] 12.248846
#> [3,]  0.000000
#> 
#> $`21`
#>            [,1]
#> [1,] -0.6413472
#> [2,] -4.9723596
#> [3,]  0.0000000
#> 
#> $`22`
#>           [,1]
#> [1,] 0.6372205
#> [2,] 3.8424829
#> [3,] 0.0000000
#> 
#> $`23`
#>           [,1]
#> [1,] 0.2157024
#> [2,] 0.9088105
#> [3,] 0.0000000
#> 
#> $`24`
#>           [,1]
#> [1,] 0.7843671
#> [2,] 2.2928082
#> [3,] 0.0000000
#> 
#> $`25`
#>            [,1]
#> [1,] -0.9024883
#> [2,] -4.6539785
#> [3,]  0.0000000
#> 
#> $`26`
#>            [,1]
#> [1,] -0.5426604
#> [2,] -2.9953980
#> [3,]  0.0000000
#> 
#> $`27`
#>            [,1]
#> [1,] -0.8225439
#> [2,] -4.5053054
#> [3,]  0.0000000
#> 
#> $`28`
#>          [,1]
#> [1,] 0.191686
#> [2,] 0.777369
#> [3,] 0.000000
#> 
#> $`29`
#>           [,1]
#> [1,] -1.208710
#> [2,] -5.221281
#> [3,]  0.000000
#> 
#> $`30`
#>             [,1]
#> [1,] -0.06843491
#> [2,] -0.70377740
#> [3,]  0.00000000
#> 
#> $`31`
#>             [,1]
#> [1,] -0.06394928
#> [2,] -0.16357208
#> [3,]  0.00000000
#> 
#> $`32`
#>           [,1]
#> [1,]  1.403329
#> [2,] 15.650961
#> [3,]  0.000000
#> 
#> $`33`
#>            [,1]
#> [1,] -0.1098874
#> [2,] -0.2788995
#> [3,]  0.0000000
#> 
#> $`34`
#>            [,1]
#> [1,] -0.3227348
#> [2,] -2.5624382
#> [3,]  0.0000000
#> 
#> $`35`
#>            [,1]
#> [1,] -0.7103724
#> [2,] -2.5781509
#> [3,]  0.0000000
#> 
#> $`36`
#>           [,1]
#> [1,] -0.331525
#> [2,] -1.871232
#> [3,]  0.000000
#> 
#> $`37`
#>           [,1]
#> [1,] 0.2620734
#> [2,] 0.3630772
#> [3,] 0.0000000
#> 
#> $`38`
#>           [,1]
#> [1,] 0.3959775
#> [2,] 1.4459367
#> [3,] 0.0000000
#> 
#> $`39`
#>          [,1]
#> [1,] 1.113938
#> [2,] 2.312521
#> [3,] 0.000000
#> 
#> $`40`
#>           [,1]
#> [1,] 0.7583116
#> [2,] 6.0267848
#> [3,] 0.0000000
#> 
#> $`41`
#>            [,1]
#> [1,] -0.1337112
#> [2,] -0.5206211
#> [3,]  0.0000000
#> 
#> $`42`
#>          [,1]
#> [1,] 1.348701
#> [2,] 5.933090
#> [3,] 0.000000
#> 
#> $`43`
#>           [,1]
#> [1,] -1.725720
#> [2,] -3.484551
#> [3,]  0.000000
#> 
#> $`44`
#>           [,1]
#> [1,] 0.3118737
#> [2,] 3.1755130
#> [3,] 0.0000000
#> 
#> $`45`
#>            [,1]
#> [1,] -0.5799873
#> [2,] -2.5933004
#> [3,]  0.0000000
#> 
#> $`46`
#>          [,1]
#> [1,] 1.221308
#> [2,] 6.650907
#> [3,] 0.000000
#> 
#> $`47`
#>            [,1]
#> [1,] -0.4459443
#> [2,] -2.2433022
#> [3,]  0.0000000
#> 
#> $`48`
#>          [,1]
#> [1,] 1.123171
#> [2,] 8.521486
#> [3,] 0.000000
#> 
#> $`49`
#>           [,1]
#> [1,] -0.234843
#> [2,] -2.219780
#> [3,]  0.000000
#> 
#> $`50`
#>            [,1]
#> [1,]  -2.099166
#> [2,] -17.091360
#> [3,]   0.000000
#> 
#> $`51`
#>           [,1]
#> [1,] -0.410218
#> [2,] -2.306677
#> [3,] -0.410218
#> 
#> $`52`
#>           [,1]
#> [1,] -1.677059
#> [2,] -8.496442
#> [3,] -1.677059
#> 
#> $`53`
#>           [,1]
#> [1,] 0.3686454
#> [2,] 0.8017682
#> [3,] 0.3686454
#> 
#> $`54`
#>          [,1]
#> [1,] 2.122775
#> [2,] 2.916418
#> [3,] 2.122775
#> 
#> $`55`
#>           [,1]
#> [1,] -2.174288
#> [2,] -9.245931
#> [3,] -2.174288
#> 
#> $`56`
#>          [,1]
#> [1,] 1.184887
#> [2,] 2.185840
#> [3,] 1.184887
#> 
#> $`57`
#>           [,1]
#> [1,] -1.390113
#> [2,] -8.698369
#> [3,] -1.390113
#> 
#> $`58`
#>           [,1]
#> [1,]  1.772234
#> [2,] 13.540832
#> [3,]  1.772234
#> 
#> $`59`
#>          [,1]
#> [1,] 1.516718
#> [2,] 5.157671
#> [3,] 1.516718
#> 
#> $`60`
#>            [,1]
#> [1,] -0.7246631
#> [2,] -2.8111257
#> [3,] -0.7246631
#> 
#> $`61`
#>            [,1]
#> [1,] -0.1994908
#> [2,] -1.0063300
#> [3,] -0.1994908
#> 
#> $`62`
#>            [,1]
#> [1,] 0.05221903
#> [2,] 0.19447557
#> [3,] 0.05221903
#> 
#> $`63`
#>            [,1]
#> [1,] -0.2350012
#> [2,] -0.7542925
#> [3,] -0.2350012
#> 
#> $`64`
#>          [,1]
#> [1,] 2.712828
#> [2,] 9.503417
#> [3,] 2.712828
#> 
#> $`65`
#>           [,1]
#> [1,] 0.2568957
#> [2,] 0.9219946
#> [3,] 0.2568957
#> 
#> $`66`
#>            [,1]
#> [1,] -0.5408829
#> [2,] -1.3914677
#> [3,] -0.5408829
#> 
#> $`67`
#>           [,1]
#> [1,] 0.8212808
#> [2,] 1.9064557
#> [3,] 0.8212808
#> 
#> $`68`
#>           [,1]
#> [1,] 0.1617246
#> [2,] 1.1894613
#> [3,] 0.1617246
#> 
#> $`69`
#>           [,1]
#> [1,] 0.1373514
#> [2,] 0.2445705
#> [3,] 0.1373514
#> 
#> $`70`
#>            [,1]
#> [1,] 0.08560943
#> [2,] 0.20873912
#> [3,] 0.08560943
#> 
#> $`71`
#>           [,1]
#> [1,] 0.5191466
#> [2,] 2.5282568
#> [3,] 0.5191466
#> 
#> $`72`
#>           [,1]
#> [1,] -1.049001
#> [2,] -6.406825
#> [3,] -1.049001
#> 
#> $`73`
#>           [,1]
#> [1,] -1.012284
#> [2,] -3.106460
#> [3,] -1.012284
#> 
#> $`74`
#>           [,1]
#> [1,]  1.576851
#> [2,] 12.724638
#> [3,]  1.576851
#> 
#> $`75`
#>           [,1]
#> [1,] -1.889579
#> [2,] -4.845135
#> [3,] -1.889579
#> 
#> $`76`
#>             [,1]
#> [1,] 0.001801412
#> [2,] 0.012070529
#> [3,] 0.001801412
#> 
#> $`77`
#>           [,1]
#> [1,] -1.039985
#> [2,] -5.597028
#> [3,] -1.039985
#> 
#> $`78`
#>              [,1]
#> [1,] -0.004057753
#> [2,] -0.051309878
#> [3,] -0.004057753
#> 
#> $`79`
#>          [,1]
#> [1,] 1.204343
#> [2,] 2.453417
#> [3,] 1.204343
#> 
#> $`80`
#>            [,1]
#> [1,]  -2.049119
#> [2,] -12.056276
#> [3,]  -2.049119
#> 
#> $`81`
#>           [,1]
#> [1,] 0.8684505
#> [2,] 6.1602912
#> [3,] 0.8684505
#> 
#> $`82`
#>            [,1]
#> [1,] 0.02007871
#> [2,] 0.09786022
#> [3,] 0.02007871
#> 
#> $`83`
#>            [,1]
#> [1,]  -1.426839
#> [2,] -11.829976
#> [3,]  -1.426839
#> 
#> $`84`
#>           [,1]
#> [1,] -1.824643
#> [2,] -7.391677
#> [3,] -1.824643
#> 
#> $`85`
#>           [,1]
#> [1,] 0.6547704
#> [2,] 5.0348827
#> [3,] 0.6547704
#> 
#> $`86`
#>             [,1]
#> [1,] -0.09048311
#> [2,] -0.44641077
#> [3,] -0.09048311
#> 
#> $`87`
#>           [,1]
#> [1,] 0.2464731
#> [2,] 1.4233795
#> [3,] 0.2464731
#> 
#> $`88`
#>           [,1]
#> [1,] 0.9047461
#> [2,] 4.0564887
#> [3,] 0.9047461
#> 
#> $`89`
#>          [,1]
#> [1,] 1.891903
#> [2,] 5.183376
#> [3,] 1.891903
#> 
#> $`90`
#>             [,1]
#> [1,] -0.05199739
#> [2,] -0.27488232
#> [3,] -0.05199739
#> 
#> $`91`
#>            [,1]
#> [1,] -0.4350385
#> [2,] -1.6101701
#> [3,] -0.4350385
#> 
#> $`92`
#>          [,1]
#> [1,] 1.457475
#> [2,] 8.447507
#> [3,] 1.457475
#> 
#> $`93`
#>            [,1]
#> [1,] -0.8233025
#> [2,] -4.0204269
#> [3,] -0.8233025
#> 
#> $`94`
#>           [,1]
#> [1,] -1.189439
#> [2,] -8.530958
#> [3,] -1.189439
#> 
#> $`95`
#>            [,1]
#> [1,] -0.3922243
#> [2,] -1.3103175
#> [3,] -0.3922243
#> 
#> $`96`
#>          [,1]
#> [1,]  2.40981
#> [2,] 17.50136
#> [3,]  2.40981
#> 
#> $`97`
#>            [,1]
#> [1,] -0.6323276
#> [2,] -1.2271591
#> [3,] -0.6323276
#> 
#> $`98`
#>           [,1]
#> [1,] 0.4354869
#> [2,] 2.5948378
#> [3,] 0.4354869
#> 
#> $`99`
#>           [,1]
#> [1,] -1.089043
#> [2,] -4.827411
#> [3,] -1.089043
#> 
#> $`100`
#>           [,1]
#> [1,] -1.033425
#> [2,] -3.393269
#> [3,] -1.033425
#> 
#> 
#> 
#> Slot "GFUN":
#> function () 
#> NULL
#> <bytecode: 0x7fea4756b2b0>
#> 
#> Slot "corrections":
#> list()
#> 
#> Slot "estimates":
#> [1] -0.04061272  0.14435320  0.35436823
#> 
#> Slot "vcov":
#>              [,1]          [,2]          [,3]
#> [1,]  0.053446050 -0.0085998270 -0.0117461490
#> [2,] -0.008599827  0.0018120535 -0.0001770491
#> [3,] -0.011746149 -0.0001770491  0.0403839561
#> 

# Compare to lm() results
summary(lm(Y4 ~ X1 + X2, data = geexex))
#> 
#> Call:
#> lm(formula = Y4 ~ X1 + X2, data = geexex)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -2.17429 -0.59391 -0.05797  0.64161  2.71283 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)   
#> (Intercept) -0.04061    0.26683  -0.152  0.87934   
#> X1           0.14435    0.04477   3.224  0.00172 **
#> X2           0.35437    0.20492   1.729  0.08693 . 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 1.023 on 97 degrees of freedom
#> Multiple R-squared:  0.1165,	Adjusted R-squared:  0.0983 
#> F-statistic: 6.396 on 2 and 97 DF,  p-value: 0.002458
#>