From a list of \(\psi(O_i, \theta)\) for i = 1, ..., m,
creates \(G_m = \sum_i \psi(O_i, \theta)\),
called GFUN
. Here, \(\psi(O_i, \theta)\) is the
*inner* part of an estFUN
, in that the data is fixed and \(G_m\)
is a function of \(\theta)\).
create_GFUN(object, ...)
# S4 method for m_estimation_basis
create_GFUN(object)
an object of class m_estimation_basis
additional arguments passed to other methods
a function
myee <- function(data){
function(theta){
c(data$Y1 - theta[1],
(data$Y1 - theta[1])^2 - theta[2])
}
}
mybasis <- create_basis(
estFUN = myee,
data = geexex)
f <- grab_GFUN(create_GFUN(mybasis))
# Evaluate GFUN at mean and variance: should be close to zero
n <- nrow(geexex)
f(c(mean(geexex$Y1), var(geexex$Y1) * (n - 1)/n))
#> [1] -2.131628e-14 -4.085621e-14